10 research outputs found

    Investigation of Cytotoxicity of Biosynthesized Colloidal Nanosilver against Local Leishmania tropica: In Vitro Study

    Get PDF
    Leishmaniasis is one of the biggest health problems in the world. Traditional therapeutic methods still depend on a small range of products, mostly chemically. However, the treatment with these drugs is expensive and can cause serious adverse effects, and they have inconsistent effectiveness due to the resistance of parasites to these drugs. The treatment of leishmanial disease has always been a challenge for researchers. The development of nanoscale metals such as silver has attracted significant attention in the field of medicine. The unique characteristic features of silver nanoparticles (AgNPs) make them effective antileishmanial agents. In recent years, green nanotechnology has provided the development of green nanoparticle-based treatment methods for Leishmaniasis. Although there are many studies based on green nanoparticles against Leishmania parasites, this is the first study on the antileishmanial effect of biosynthesized AgNPs using an aqueous extract of Eucalyptus camaldulensis leaves (AEECL) as a reducing agent of silver ions. Different parameters such as AgNO3 concentration, AEECL concentration, and reaction time were studied to investigate the optimum factors for the preparation of stable and small-sized silver nanoparticles. The spherical shape of colloidal nanosilver (CN-Ag) was confirmed by atomic force microscope (AFM) and scanning electron microscope (SEM) images with sizes of 27 and 12 nm, respectively. A high density of nanoparticles with a small size of 10 nm has been confirmed from dynamic light scattering (DLS) analysis. The zeta potential value of 23 mV indicated that colloidal silver nanoparticles were stable. The nano-tracker analysis (NTA) showed the Brownian motion of silver nanoparticles with a hydrodynamic diameter of 31 nm. The antioxidant property of CN-Ag was determined using the stable radical 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. In this study, a significant cytotoxic effect of biosynthesized CN-Ag has been shown against Leishmania tropica parasites at low concentrations (1.25, 2.5, and 3.75 µg/mL). These results could be used as a future alternative drug or could be a supportive treatment for Leishmaniasis

    Influence of Polyvinylpyrrolidone Concentration on Properties and Anti-Bacterial Activity of Green Synthesized Silver Nanoparticles

    Get PDF
    Environmentally green synthesis of stable polyvinyl pyrrolidone (PVP)-capped silver nanoparticles (PVP-AgNPs) was successfully carried out. The present study focused on investigating the influence of adding PVP during the synthesis process on the size, optical properties and antibacterial effect of silver nanoparticles produced. An aqueous extract of Eucalyptus camaldulensis leaves was used as a reducing agent. The effects of different PVP concentrations and reducing time on the synthesis of nanoparticles (NPs) were characterized by UV–Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive spectrum (EDX), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and nano tracker analysis (NTA). The addition of PVP was studied. The prepared PVP-AgNPs were spherical with an average size of 13 nm. FTIR analysis confirmed that PVP protects AgNPs by a coordination bond between silver nanoparticles and both N and O of PVP. DLS results indicated the good dispersion of silver nanoparticles. PVP-AgNPs were found to be stable for nearly 5 months. Antibacterial studies through the agar well diffusion method confirmed that silver nanoparticles synthesized using PVP had no inhibitor activity toward Gram-positive and Gram-negative bacteria as opposed to silver nanoparticles prepared without adding PVP, which showed a significant antibacterial activity towards some of the tested pathogens

    Identification of Major Constituents of Hypericum perforatum L. Extracts in Syria by Development of a Rapid, Simple, and Reproducible HPLC-ESI-Q-TOF MS Analysis and Their Antioxidant Activities

    Get PDF
    Hypericum perforatum Linn (St. John’s wort) is a popular and widespread medicine in Syria, which is used for a wide range of conditions, including gastrointestinal diseases, heart disease, skin diseases, and psychological disorders. This widespread use prompted us to identify the main compounds of this plant from Syria that are responsible for its medicinal properties, especially since its components differ between countries according to the nature of the soil, climate, and altitude. This is, to the best of our knowledge, the first report in which St. John’s wort, a plant native to Syria, is extracted using different solvents and its most important compounds are identified. In this study, the dried above-ground parts, i.e., leaves, stem, petals, and flowers, were extracted using different solvents (water, ethanol, methanol, and acetone) and extraction protocols. By increasing the polarity of the solvent, higher yields were obtained, indicating that mainly hydrophobic compounds were extracted. Therefore, we conclude that extraction using the tea method or using a mixture of water and organic solvents resulted in higher yields compared with pure organic solvents or continuous boiling with water for long periods. The obtained extracts were analyzed using high-performance liquid chromatography equipped with a diode array detector (HPLC–DAD), coupled with UV–visible spectrophotometry at a full spectrum (200–800 nm). The HPLC spectra of the extracts were almost identical at three wavelengths (260 nm for phloroglucinols (hyperforin and derivates), 590 nm for naphthodianthrones (hypericins), and 350 nm for other flavonols, flavones, and caffeoylquinic acids), with differences observed only in the intensity of the peaks. This indicates that the same compounds were obtained using different solvents, but in different amounts. Five standards (chlorogenic acid, quercetin, quercitrin hydrate, hyperoside, and hypericin) were used, and a comparison with retention times and ultraviolet (UV) spectra reported in the literature was performed to identify 10 compounds in these extracts: hyperforin, adhyperforin, hypericin, rutin, quercetin, quercitrin, quercitrin hydrate, hyperoside, biapigenin, and chlorogenic acid. Although the European Pharmacopoeia still describes ultraviolet spectroscopy as a method for determining the quantity of Hyperici herba, interference from other metabolites can occur. Combined HPLC–DAD and electrospray ionization–mass spectrometry (LC-ESI-MS) in the positive mode have therefore also been used to confirm the presence of these compounds in the extracts by correlating known masses with the identified masses or through characteristic fragmentation patterns. Total phenolic contents of the extracts were determined by the Folin–Ciocalteu assay, and antioxidant activity was evaluated as free radical scavenging capacity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The results indicate that the aqueous extracts prepared by the tea method gave the highest total phenols, while the pure organic solvents gave very low phenols. Also, the extracts that contain the largest amount of phenols gave lower IC50 values or higher antioxidant activity than that of others

    Influence of Bath Temperature and Deposition Time on Topographical and Optical Properties of Nanoparticles ZnS Thin Films Synthesized by a Chemical Bath Deposition Method

    No full text
    In this paper, zinc sulfide nanoparticle (ZnS-NP) thin films were deposited onto glass substrates by chemical bath deposition using zinc sulfate as the cation precursor and thiourea as the anionic precursor. Different bath temperatures (65, 70, 75, and 80°C) and different deposition times (20, 30, 40, and 50 min) were selected to study the performance of ZnS thin films. Topographical and optical characterizations of the films were studied using the atomic force microscope (AFM) and UV-Vis spectroscope. The best ZnS thin films were deposited at a bath temperature (70°C) and a deposition time (30 min) with homogeneous distribution, high density, and small average diameter (106 nm). The energy gap (Eg) was found to be in the range of 4.05-3.97 eV for the ZnS films. Optical constants (refractive index, n, extinction coefficient, k, and dielectric constant, ε) of the films were obtained in the wavelength range 300-500 nm by using spectrophotometric measurement. The dispersion of the refractive index is analyzed by using a single oscillator model. The oscillator energy E0 and dispersion energy Ed were determined using the Wemple-DiDomenico single oscillator model. Urbach’s energy increases from 0.907 eV to 2.422 eV with increasing of deposition time. The calculated radius of nanoparticles using Brus equation was 1.9, 2.3, 2.45, and 2.51 nm at deposition times 20, 30, 40, and 50 min, respectively

    Cefdinir Inclusion in Mesoporous Silica as Effective Dissolution Enhancer with Improved Physical Stability

    No full text
    Objective: The objective of this research was to enhance the physical stability and the dissolution rate of cefdinir, a BCS class IV drug, characterized by low and variable bioavailability due to both its low solubility and low permeability. Methods: Cefdinir was loaded into the mesoporous silica (SBA-15), by using the solvent immersion method starting from different organic solvents. And then formula (F3), which exhibited the highest loading percentage, was selected to study its drug release in media with different pH (1.2, 4.5, and 6.8), and has been fully characterized by using: Fourier Transform Infrared Spectroscopy (FT-IR) Spectroscopy, Differential Scanning Calorimetry, Powder X-ray Diffraction, and has been subjected to accelerated stability tests using different temperatures and relative humidity. Drug release kinetics were studied by using the following models: Probit, Gompertz, Weibull, and Logistic. Results: The results showed a remarkable dissolution improvement of cefdinir from the loaded silica in comparison to the crystalline drug at the different studied media. Drug release behaviors were well simulated by the Weibull model for F3 in all studied media and for pure Cefdinir in phosphate buffer only, and by the Gompertz function for pure Cefdinir in HCl buffer and Acetate buffer. FTIR results showed hydrogen bonds formed between the drug and silica, DSC and PXRD results revealed the transformation of cefdinir into an amorphous form upon adsorption. Stability studies under different conditions revealed the ability of mesoporous silica to maintain the amorphous state of the drug, which has been formed upon adsorption, and to prevent re-organization in the crystal nucleus of the drug molecules. Conclusion: Thus, loading cefdinir onto mesoporous silica can be used as a promising method to enhance drug dissolution, and maintain the physical stability of its amorphous form

    pH- Modified Solid Dispersions of Cefdinir for Dissolution Rate Enhancement: Formulation and Characterization

    No full text
    Objective: Cefdinir is a poorly- water-soluble drug, it belongs to Biopharmaceutical Classification System class IV, which shows that it may have limited therapeutic effects due to its low solubility and poor bioavailability. The aim of the present work was to design a pH-modified solid dispersion (pHM-SD) that can improve the dissolution rate of cefdinir and subsequently its bioavailability. Materials and Methods: pHM-SDs of cefdinir were prepared at different drug-to-carrier ratios by the spray-drying technique. The solid dispersions were investigated by dissolution studies at different pH media, drug release kinetics were studied, and their solid-state characterizations were performed by FTIR spectrophotometer, Scanning electron microscopy (SEM), Differential scanning calorimetry (DSC), and Powder X-ray diffraction (PXRD). Results: PVP- based and HPMC- based pHM-SDs exhibited a marked improvement in the dissolution behavior when compared with crystalline cefdinir powder, whereas Eudragit L100-based pHM-SDs showed lower dissolution at pH 1.2 and 4.5. FTIR results may indicate a formation of a salt between cefdinir and the alkalizer. Solid-state characterization may indicate a change in crystallinity of cefdinir into an amorphous state. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsmeyer–Peppas model and the drug release kinetics primarily as Fickian diffusion. Conclusion: According to these observations, pHM-SD in the presence of an alkalizer for a poorly water-soluble acidic drug, cefdinir, appeared to be efficacious for enhancing its dissolution rate

    ENHANCEMENT OF CANDESARTAN CILEXETIL DISSOLUTION RATE BY USING DIFFERENT METHODS

    Get PDF
     The poor solubility and wettability of candesartan cilexetil (CAN) leads to poor dissolution and hence, low bioavailability after oral administration.The aim of this study was to improve the dissolution rate and hence the bioavailability of CAN by preparing solid dispersions (SD)/inclusion complexes(IC) and liquisolid (LS) systems. SD were prepared using polyethylene glycol (PEG) 6000 (hydrophilic polymer) by melting method in different drugto-carrier ratios (1:2, 1:4 weight ratio), while IC (IC1:1 molar ratio) were made with hydroxypropyl-β cyclodextrin (complexing agent) by kneadingmethod. LS systems were prepared using PEG 400 as the nonvolatile solvent, Avicel PH102 as carrier, Aerosil 200 as the coating material. Based on thedrug release studies from SDs, SD1:4 was selected to prepare tablets, because it showed an enhanced dissolution profile in comparison with pure drugand SD1:2 according to two-tailed Student's t-test (p<0.05), in order to compare them with IC1:1 tablets, and LS systems and the marketed product.Fourier transform infrared, and differential scanning calorimetry studies indicated no interaction of the drug with the carriers, and provided valuableinsight on the possible reasons for enhanced dissolution profile. Dissolution studies showed that LS systems enhanced dissolution profile of CANcompared with SD (SD1:4) tablets, IC1:1 tablets and the marketed product. The overall rank order given for the various formulations when comparedwith marketed tablets was: LS tablets > SD1:4 tablets > IC1:1 tablet > marketed tablets. Thus, the SD/IC technique and LS systems can be successfullyused for enhancement of the dissolution profile of CAN.Keywords: Candesartan cilexetil, Liquisolid systems, Solid dispirions, Inclusion complexes.Â

    Investigation of Cytotoxicity of Biosynthesized Colloidal Nanosilver against Local Leishmania tropica: In Vitro Study

    No full text
    Leishmaniasis is one of the biggest health problems in the world. Traditional therapeutic methods still depend on a small range of products, mostly chemically. However, the treatment with these drugs is expensive and can cause serious adverse effects, and they have inconsistent effectiveness due to the resistance of parasites to these drugs. The treatment of leishmanial disease has always been a challenge for researchers. The development of nanoscale metals such as silver has attracted significant attention in the field of medicine. The unique characteristic features of silver nanoparticles (AgNPs) make them effective antileishmanial agents. In recent years, green nanotechnology has provided the development of green nanoparticle-based treatment methods for Leishmaniasis. Although there are many studies based on green nanoparticles against Leishmania parasites, this is the first study on the antileishmanial effect of biosynthesized AgNPs using an aqueous extract of Eucalyptus camaldulensis leaves (AEECL) as a reducing agent of silver ions. Different parameters such as AgNO3 concentration, AEECL concentration, and reaction time were studied to investigate the optimum factors for the preparation of stable and small-sized silver nanoparticles. The spherical shape of colloidal nanosilver (CN-Ag) was confirmed by atomic force microscope (AFM) and scanning electron microscope (SEM) images with sizes of 27 and 12 nm, respectively. A high density of nanoparticles with a small size of 10 nm has been confirmed from dynamic light scattering (DLS) analysis. The zeta potential value of 23 mV indicated that colloidal silver nanoparticles were stable. The nano-tracker analysis (NTA) showed the Brownian motion of silver nanoparticles with a hydrodynamic diameter of 31 nm. The antioxidant property of CN-Ag was determined using the stable radical 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. In this study, a significant cytotoxic effect of biosynthesized CN-Ag has been shown against Leishmania tropica parasites at low concentrations (1.25, 2.5, and 3.75 µg/mL). These results could be used as a future alternative drug or could be a supportive treatment for Leishmaniasis

    Influence of Polyvinylpyrrolidone Concentration on Properties and Anti-Bacterial Activity of Green Synthesized Silver Nanoparticles

    No full text
    Environmentally green synthesis of stable polyvinyl pyrrolidone (PVP)-capped silver nanoparticles (PVP-AgNPs) was successfully carried out. The present study focused on investigating the influence of adding PVP during the synthesis process on the size, optical properties and antibacterial effect of silver nanoparticles produced. An aqueous extract of Eucalyptus camaldulensis leaves was used as a reducing agent. The effects of different PVP concentrations and reducing time on the synthesis of nanoparticles (NPs) were characterized by UV–Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive spectrum (EDX), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and nano tracker analysis (NTA). The addition of PVP was studied. The prepared PVP-AgNPs were spherical with an average size of 13 nm. FTIR analysis confirmed that PVP protects AgNPs by a coordination bond between silver nanoparticles and both N and O of PVP. DLS results indicated the good dispersion of silver nanoparticles. PVP-AgNPs were found to be stable for nearly 5 months. Antibacterial studies through the agar well diffusion method confirmed that silver nanoparticles synthesized using PVP had no inhibitor activity toward Gram-positive and Gram-negative bacteria as opposed to silver nanoparticles prepared without adding PVP, which showed a significant antibacterial activity towards some of the tested pathogens
    corecore