732 research outputs found

    Giant lasing effect in magnetic nanoconductors

    Full text link
    We propose a new principle for a compact solid-state laser in the 1-100 THz regime. This is a frequency range where attempts to fabricate small size lasers up till now have met severe technical problems. The proposed laser is based on a new mechanism for creating spin-flip processes in ferromagnetic conductors. The mechanism is due to the interaction of light with conduction electrons; the interaction strength, being proportional to the large exchange energy, exceeds the Zeeman interaction by orders of magnitude. On the basis of this interaction, a giant lasing effect is predicted in a system where a population inversion has been created by tunneling injection of spin-polarized electrons from one ferromagnetic conductor to another -- the magnetization of the two ferromagnets having different orientations. Using experimental data for ferromagnetic manganese perovskites with nearly 100% spin polarization we show the laser frequency to be in the range 1-100 THz. The optical gain is estimated to be of order 10^7 cm^{-1}, which exceeds the gain of conventional semiconductor lasers by 3 or 4 orders of magnitude. A relevant experimental study is proposed and discussed.Comment: 4 pages, 3 figure

    Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps

    Full text link
    We investigate single ions of 40Ca+^{40}Ca^+ in Paul traps for quantum information processing. Superpositions of the S1/2_{1/2} electronic ground state and the metastable D5/2_{5/2} state are used to implement a qubit. Laser light on the S1/2_{1/2} \leftrightarrow D5/2_{5/2} transition is used for the manipulation of the ion's quantum state. We apply sideband cooling to the ion and reach the ground state of vibration with up to 99.9% probability. Starting from this Fock state n=0>|n=0>, we demonstrate coherent quantum state manipulation. A large number of Rabi oscillations and a ms-coherence time is observed. Motional heating is measured to be as low as one vibrational quantum in 190 ms. We also report on ground state cooling of two ions.Comment: 12 pages, 6 figures. submitted to Journal of Modern Optics, Special Issue on Quantum Optics: Kuehtai 200

    Quantum state engineering on an optical transition and decoherence in a Paul trap

    Get PDF
    A single Ca+ ion in a Paul trap has been cooled to the ground state of vibration with up to 99.9% probability. Starting from this Fock state |n=0> we have demonstrated coherent quantum state manipulation on an optical transition. Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar number of Rabi oscillations after preparation of the ion in the |n=1> Fock state. The coherence of optical state manipulation is only limited by laser and ambient magnetic field fluctuations. Motional heating has been measured to be as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure

    Physical properties of misfit-layered (Bi,Pb)-Sr-Co-O system: Effect of hole doping into triangular lattice formed by low-spin Co ions

    Full text link
    Pb-doping effect on physical properties of misfit-layered (Bi,Pb)-Sr-Co-O system, in which Co ions form a two-dimensional triangular lattice, was investigated in detail by electronic transport, magnetization and specific-heat measurements. Pb doping enhances the metallic behavior, suggesting that carriers are doped. Pb doping also enhances the magnetic correlation in this system and increases the magnetic transition temperature. We found the existence of the short-range magnetic correlation far above the transition temperature, which seems to induce the spin-glass state coexisting with the ferromagnetic long-range order at low temperatures. Specific-heat measurement suggests that the effective mass of the carrier in (Bi,Pb)-Sr-Co-O is not enhanced so much as reported in NaCo2{}_2O4{}_4. Based on these experimental results, we propose a two-bands model which consists of narrow a1ga_{1g} and rather broad ege'{}_g bands. The observed magnetic property and magnetotransport phenomena are explained well by this model

    Dirac-Foldy term and the electromagnetic polarizability of the neutron

    Get PDF
    We reconsider the Dirac-Foldy contribution μ2/m\mu^2/m to the neutron electric polarizability. Using a Dirac equation approach to neutron-nucleus scattering, we review the definitions of Compton continuum (αˉ\bar{\alpha}), classical static (αEn\alpha^n_E), and Schr\"{o}dinger (αSch\alpha_{Sch}) polarizabilities and discuss in some detail their relationship. The latter αSch\alpha_{Sch} is the value of the neutron electric polarizability as obtained from an analysis using the Schr\"{o}dinger equation. We find in particular αSch=αˉμ2/m\alpha_{Sch} = \bar{\alpha} - \mu^2/m , where μ\mu is the magnitude of the magnetic moment of a neutron of mass mm. However, we argue that the static polarizability αEn\alpha^n_E is correctly defined in the rest frame of the particle, leading to the conclusion that twice the Dirac-Foldy contribution should be added to αSch\alpha_{Sch} to obtain the static polarizability αEn\alpha^n_E.Comment: 11 pages, RevTeX, to appear in Physical Review

    Processing and Transmission of Information

    Get PDF
    Contains research objectives and reports on seven research projects.Lincoln Laboratory, Purchase Order DDL-B222Air Force under Air Force Contract AF19(604)-5200Office of Naval Research under Contract Nonr-1841(57

    Anisotropic Spin Hamiltonians due to Spin-Orbit and Coulomb Exchange Interactions

    Get PDF
    This paper contains the details of Phys. Rev. Lett. 73, 2919 (1994) and, to a lesser extent, Phys. Rev. Lett. 72, 3710 (1994). We treat a Hubbard model which includes all the 3d states of the Cu ions and the 2p states of the O ions. We also include spin-orbit interactions, hopping between ground and excited crystal field states of the Cu ions, and rather general Coulomb interactions. Our analytic results for the spin Hamiltonian, H, are corroborated by numerical evaluations of the energy splitting of the ground manifold for two holes on either a pair of Cu ions or a Cu-O-Cu complex. In the tetragonal symmetry case and for the model considered, we prove that H is rotationally invariant in the absence of Coulomb exchange. When Coulomb exchange is present, each bond Hamiltonian has full biaxial anisotropy, as expected for this symmetry. For lower symmetry situations, the single bond spin Hamiltonian is anisotropic at order t**6 for constant U and at order t**2 for nonconstant U. (Constant U means that the Coulomb interaction between orbitals does not depend on which orbitals are involved.)Comment: 50 pages, ILATEX Version 2.09 <13 Jun 1989

    Calculations of the A_1 phonon frequency in photoexcited Tellurium

    Get PDF
    Calculations of the A_1 phonon frequency in photoexcited tellurium are presented. The phonon frequency as a function of photoexcited carrier density and phonon amplitude is determined. Recent pump probe experiments are interpreted in the light of these calculatons. It is proposed that, in conjunction with measurements of the phonon period in ultra-fast pump-probe reflectivity experiments, the calculated frequency shifts can be used to infer the evolution of the density of photoexcited carriers on a sub-picosecond time-scale.Comment: 15 pages Latex, 3 postscript figure

    Ultrafast changes in lattice symmetry probed by coherent phonons

    Full text link
    The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, in order to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. We show that a time-dependent change in the coherent phonon spectrum can probe a change in symmetry of the lattice potential, thus providing an all-optical probe of structural transitions. We examine the photoinduced structural phase transition in VO2 and show that, above the phase transition threshold, photoexcitation completely changes the lattice potential on an ultrafast timescale. The loss of the equilibrium-phase phonon modes occurs promptly, indicating a non-thermal pathway for the photoinduced phase transition, where a strong perturbation to the lattice potential changes its symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure
    corecore