732 research outputs found
Giant lasing effect in magnetic nanoconductors
We propose a new principle for a compact solid-state laser in the 1-100 THz
regime. This is a frequency range where attempts to fabricate small size lasers
up till now have met severe technical problems. The proposed laser is based on
a new mechanism for creating spin-flip processes in ferromagnetic conductors.
The mechanism is due to the interaction of light with conduction electrons; the
interaction strength, being proportional to the large exchange energy, exceeds
the Zeeman interaction by orders of magnitude. On the basis of this
interaction, a giant lasing effect is predicted in a system where a population
inversion has been created by tunneling injection of spin-polarized electrons
from one ferromagnetic conductor to another -- the magnetization of the two
ferromagnets having different orientations. Using experimental data for
ferromagnetic manganese perovskites with nearly 100% spin polarization we show
the laser frequency to be in the range 1-100 THz. The optical gain is estimated
to be of order 10^7 cm^{-1}, which exceeds the gain of conventional
semiconductor lasers by 3 or 4 orders of magnitude. A relevant experimental
study is proposed and discussed.Comment: 4 pages, 3 figure
Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps
We investigate single ions of in Paul traps for quantum
information processing. Superpositions of the S electronic ground state
and the metastable D state are used to implement a qubit. Laser light
on the S D transition is used for the
manipulation of the ion's quantum state. We apply sideband cooling to the ion
and reach the ground state of vibration with up to 99.9% probability. Starting
from this Fock state , we demonstrate coherent quantum state
manipulation. A large number of Rabi oscillations and a ms-coherence time is
observed. Motional heating is measured to be as low as one vibrational quantum
in 190 ms. We also report on ground state cooling of two ions.Comment: 12 pages, 6 figures. submitted to Journal of Modern Optics, Special
Issue on Quantum Optics: Kuehtai 200
Quantum state engineering on an optical transition and decoherence in a Paul trap
A single Ca+ ion in a Paul trap has been cooled to the ground state of
vibration with up to 99.9% probability. Starting from this Fock state |n=0> we
have demonstrated coherent quantum state manipulation on an optical transition.
Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar
number of Rabi oscillations after preparation of the ion in the |n=1> Fock
state. The coherence of optical state manipulation is only limited by laser and
ambient magnetic field fluctuations. Motional heating has been measured to be
as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure
Physical properties of misfit-layered (Bi,Pb)-Sr-Co-O system: Effect of hole doping into triangular lattice formed by low-spin Co ions
Pb-doping effect on physical properties of misfit-layered (Bi,Pb)-Sr-Co-O
system, in which Co ions form a two-dimensional triangular lattice, was
investigated in detail by electronic transport, magnetization and specific-heat
measurements. Pb doping enhances the metallic behavior, suggesting that
carriers are doped. Pb doping also enhances the magnetic correlation in this
system and increases the magnetic transition temperature. We found the
existence of the short-range magnetic correlation far above the transition
temperature, which seems to induce the spin-glass state coexisting with the
ferromagnetic long-range order at low temperatures. Specific-heat measurement
suggests that the effective mass of the carrier in (Bi,Pb)-Sr-Co-O is not
enhanced so much as reported in NaCoO. Based on these experimental
results, we propose a two-bands model which consists of narrow and
rather broad bands. The observed magnetic property and
magnetotransport phenomena are explained well by this model
Dirac-Foldy term and the electromagnetic polarizability of the neutron
We reconsider the Dirac-Foldy contribution to the neutron electric
polarizability. Using a Dirac equation approach to neutron-nucleus scattering,
we review the definitions of Compton continuum (), classical
static (), and Schr\"{o}dinger () polarizabilities
and discuss in some detail their relationship. The latter is the
value of the neutron electric polarizability as obtained from an analysis using
the Schr\"{o}dinger equation. We find in particular , where is the magnitude of the magnetic moment
of a neutron of mass . However, we argue that the static polarizability
is correctly defined in the rest frame of the particle, leading to
the conclusion that twice the Dirac-Foldy contribution should be added to
to obtain the static polarizability .Comment: 11 pages, RevTeX, to appear in Physical Review
Processing and Transmission of Information
Contains research objectives and reports on seven research projects.Lincoln Laboratory, Purchase Order DDL-B222Air Force under Air Force Contract AF19(604)-5200Office of Naval Research under Contract Nonr-1841(57
Anisotropic Spin Hamiltonians due to Spin-Orbit and Coulomb Exchange Interactions
This paper contains the details of Phys. Rev. Lett. 73, 2919 (1994) and, to a
lesser extent, Phys. Rev. Lett. 72, 3710 (1994). We treat a Hubbard model which
includes all the 3d states of the Cu ions and the 2p states of the O ions. We
also include spin-orbit interactions, hopping between ground and excited
crystal field states of the Cu ions, and rather general Coulomb interactions.
Our analytic results for the spin Hamiltonian, H, are corroborated by numerical
evaluations of the energy splitting of the ground manifold for two holes on
either a pair of Cu ions or a Cu-O-Cu complex. In the tetragonal symmetry case
and for the model considered, we prove that H is rotationally invariant in the
absence of Coulomb exchange. When Coulomb exchange is present, each bond
Hamiltonian has full biaxial anisotropy, as expected for this symmetry. For
lower symmetry situations, the single bond spin Hamiltonian is anisotropic at
order t**6 for constant U and at order t**2 for nonconstant U. (Constant U
means that the Coulomb interaction between orbitals does not depend on which
orbitals are involved.)Comment: 50 pages, ILATEX Version 2.09 <13 Jun 1989
Calculations of the A_1 phonon frequency in photoexcited Tellurium
Calculations of the A_1 phonon frequency in photoexcited tellurium are
presented. The phonon frequency as a function of photoexcited carrier density
and phonon amplitude is determined. Recent pump probe experiments are
interpreted in the light of these calculatons. It is proposed that, in
conjunction with measurements of the phonon period in ultra-fast pump-probe
reflectivity experiments, the calculated frequency shifts can be used to infer
the evolution of the density of photoexcited carriers on a sub-picosecond
time-scale.Comment: 15 pages Latex, 3 postscript figure
Ultrafast changes in lattice symmetry probed by coherent phonons
The electronic and structural properties of a material are strongly
determined by its symmetry. Changing the symmetry via a photoinduced phase
transition offers new ways to manipulate material properties on ultrafast
timescales. However, in order to identify when and how fast these phase
transitions occur, methods that can probe the symmetry change in the time
domain are required. We show that a time-dependent change in the coherent
phonon spectrum can probe a change in symmetry of the lattice potential, thus
providing an all-optical probe of structural transitions. We examine the
photoinduced structural phase transition in VO2 and show that, above the phase
transition threshold, photoexcitation completely changes the lattice potential
on an ultrafast timescale. The loss of the equilibrium-phase phonon modes
occurs promptly, indicating a non-thermal pathway for the photoinduced phase
transition, where a strong perturbation to the lattice potential changes its
symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure
- …