15 research outputs found

    An ultra-stable cryogenic sapphire cavity laser with an instability of 1.9×10−161.9\times10^{-16} based on a low vibration level cryostat

    Full text link
    Cryogenic ultra-stable lasers have extremely low thermal noise limits and frequency drifts, but they are more seriously affected by vibration noise from cryostats. Main material candidates for cryogenic ultra-stable cavities include silicon and sapphire. Although sapphire has many excellent properties at low temperature, the development of sapphire-based cavities is less advanced than that of silicon-based. Using a homemade cryogenic sapphire cavity, we develop an ultra-stable laser source with a frequency instability of 1.9×10−161.9\times10^{-16}. This is the best frequency instability level among similar systems using cryogenic sapphire cavities reported so far. Low vibration performance of the cryostat is demonstrated with a two-stage vibration isolation, and the vibration suppression is further improved by different mixing ratio of the gas-liquid helium. With this technique, vibrations at frequencies higher than tens of hertz are greatly suppressed.Comment: 4 pages, 4 figure

    Identification and functional analysis of SWEET gene family in Averrhoa carambola L. fruits during ripening

    No full text
    Sugar Will Eventually be Exported Transporters (SWEETs), a type of sugar efflux transporters, have been extensively researched upon due to their role in phloem loading for distant sugar transport, fruit development, and stress regulation, etc. Several plant species are known to possess the SWEET genes; however, little is known about their presence in Averrhoa Carambola L. (Oxalidaceae), an evergreen fruit crop (star fruit) in tropical and subtropical regions of Southeast Asia. In this study, we established an Averrhoa Carambola L. unigenes library from fruits of ‘XianMiyangtao’ (XM) by RNA sequencing (RNA-seq). A total of 99,319 unigenes, each longer than 200 bp with a total length was 72.00 Mb, were identified. A total of 51,642 unigenes (52.00%) were annotated. Additionally, 10 AcSWEET genes from the Averrhoa Carambola L. unigenes library were identified and classified, followed by a comprehensive analysis of their structures and conserved motif compositions, and evolutionary relationships. Moreover, the expression patterns of AcSWEETs in ‘XM’ cultivars during fruit ripening were confirmed using quantitative real-time PCR (qRT-PCR), combined with the soluble sugar and titratable acids content during ripening, showed that AcSWEET2a/2b and AcSWEET16b might participate in sugar transport during fruit ripening. This work presents a general profile of the AcSWEET gene family in Averrhoa Carambola L., which can be used to perform further studies on elucidating the functional roles of AcSWEET genes

    Vibration Property of a Cryogenic Optical Resonator within a Pulse-Tube Cryostat

    No full text
    Cryogenic ultrastable laser cavities push laser stability to new levels due to their lower thermal noise limitation. Vibrational noise is one of the major obstacles to achieve a thermal-noise-limited cryogenic ultrastable laser system. Here, we carefully analyze the vibrational noise contribution to the laser frequency. We measure the vibrational noise from the top of the pulse-tube cryocooler down to the experiment space. Major differences emerge between room and cryogenic temperature operation. We cooled a homemade 6 cm sapphire optical resonator down to 3.4 K. Locking a 1064 nm laser to the resonator, we measure a frequency stability of 1.3×10−15. The vibration sensitivities change at different excitation frequencies. The vibrational noise analysis of the laser system paves the way for in situ accurate evaluation of vibrational noise for cryogenic systems. This may help in cryostat design and cryogenic precision measurements

    Design of an optical reference cavity with low thermal noise limit and flexible thermal expansion properties

    No full text
    An ultra-stable optical reference cavity with re-entrant fused silica mirrors and a ULE (Ultra Low Expansion) spacer structure is designed for the ultranarrow clock laser for an Al+ optical standard. The designed cavity has a low thermal noise limit of 1 × 10-16 and a flexible zero crossing temperature of the effective coefficient of thermal expansion (CTE). The CTE zero crossing temperature difference between a composite cavity and a pure ULE cavity can be tuned from  −10°C to 23°C, which enables operation of the designed reference cavity near room temperature without worrying about the CTE zero crossing temperature of the ULE spacer. This design can also be applied to cavities with different lengths. Vibration immunity of the cavity is also achieved through structure optimization

    Cerebellar transcranial magnetic stimulation for improving balance capacity and activity of daily living in stroke patients: a systematic review and meta-analysis

    No full text
    Abstract Background The application of cerebellar transcranial magnetic stimulation (TMS) in stroke patients has received increasing attention due to its neuromodulation mechanisms. However, studies on the effect and safety of cerebellar TMS to improve balance capacity and activity of daily living (ADL) for stroke patients are limited. This systematic review and meta-analysis aimed to investigate the effect and safety of cerebellar TMS on balance capacity and ADL in stroke patients. Method A systematic search of seven electronic databases (PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Wanfang and Chinese Scientific Journal) were conducted from their inception to October 20, 2023. The randomized controlled trials (RCTs) of cerebellar TMS on balance capacity and/or ADL in stroke patients were enrolled. The quality of included studies were assessed by Physiotherapy Evidence Database (PEDro) scale. Results A total of 13 studies involving 542 participants were eligible. The pooled results from 8 studies with 357 participants showed that cerebellar TMS could significantly improve the post-intervention Berg balance scale (BBS) score (MD = 4.24, 95%CI = 2.19 to 6.29, P < 0.00001; heterogeneity, I 2  = 74%, P = 0.0003). The pooled results from 4 studies with 173 participants showed that cerebellar TMS could significantly improve the post-intervention Time Up and Go (TUG) (MD=-1.51, 95%CI=-2.8 to -0.22, P = 0.02; heterogeneity, I 2  = 0%, P = 0.41). The pooled results from 6 studies with 280 participants showed that cerebellar TMS could significantly improve the post-intervention ADL (MD = 7.75, 95%CI = 4.33 to 11.17, P < 0.00001; heterogeneity, I 2  = 56%, P = 0.04). The subgroup analysis showed that cerebellar TMS could improve BBS post-intervention and ADL post-intervention for both subacute and chronic stage stroke patients. Cerebellar high frequency TMS could improve BBS post-intervention and ADL post-intervention. Cerebellar TMS could still improve BBS post-intervention and ADL post-intervention despite of different cerebellar TMS sessions (less and more than 10 TMS sessions), different total cerebellar TMS pulse per week (less and more than 4500 pulse/week), and different cerebellar TMS modes (repetitive TMS and Theta Burst Stimulation). None of the studies reported severe adverse events except mild side effects in three studies. Conclusions Cerebellar TMS is an effective and safe technique for improving balance capacity and ADL in stroke patients. Further larger-sample, higher-quality, and longer follow-up RCTs are needed to explore the more reliable evidence of cerebellar TMS in the balance capacity and ADL, and clarify potential mechanisms

    Establishment of DNA Molecular Fingerprint of <i>Caladium</i> Core Collections

    No full text
    Caladiums are promising colorful foliage plants due to their unique leaf shapes and dazzling colors. Until now, over 2000 varieties of Caladium have been cultivated worldwide. The long-term natural variation and artificial selection have enriched the germplasm resources of Caladium in the market, yet have blurred its genetic background. In this study, 16 informative EST-SSR markers were used to screen 144 Caladium accessions, indicating that 16 EST-SSRs could distinguish all genotypes with a minimum cumulative identity probability (PI) of 2.0 2 × 10−15. Using the simulated annealing method, the richest genetic information was acquired at the same compression ratio. A final core of 44 accessions was selected, comprising 30.6% of the individuals and retraining more than 95% of the total genetic information. No significant differences were observed in allele frequency distributions or genetic diversity parameters between the core collection and the entire population. Cluster analysis roughly divided the core collections into four populations, where 66.7% of the private alleles were detected in Pop2. Finally, DNA molecular fingerprints of 44 core accessions were established, including barcodes and quick response (QR) code molecular identities (ID). The results will lay a theoretical foundation for identifying, preserving, and utilizing Caladium germplasm resources
    corecore