700 research outputs found

    On time and the quantum-to-classical transition in Jordan-Brans-Dicke quantum gravity

    Get PDF
    Any quantum theory of gravity which treats the gravitational constant as a dynamical variable has to address the issue of superpositions of states corresponding to different eigenvalues. We show how the unobservability of such superpositions can be explained through the interaction with other gravitational degrees of freedom (decoherence). The formal framework is canonically quantized Jordan-Brans-Dicke theory. We discuss the concepts of intrinsic time and semiclassical time as well as the possibility of tunneling into regions corresponding to a negative gravitational constant. We calculate the reduced density matrix of the Jordan-Brans-Dicke field and show that the off-diagonal elements can be sufficiently suppressed to be consistent with experiments. The possible relevance of this mechanism for structure formation in extended inflation is briefly discussed.Comment: 10 pages, Latex, ZU-TH 15/93, BUTP-93/1

    What is the best strategy for the prevention of transfusion-transmitted malaria in sub-Saharan African countries where malaria is endemic?

    Get PDF
    The transmission of malaria by blood transfusion was one of the first recorded incidents of transfusion-transmitted infections (TTIs). Although the World Health Organization (WHO) recommends that blood for transfusion should be screened for TTIs, malaria screening is not performed in most malaria-endemic countries in sub-Saharan Africa (SSA). The transfusion of infected red blood cells may lead to severe post-transfusion clinical manifestations of malaria, which could be rapidly fatal. Ensuring that blood supply in endemic countries is free from malaria is highly problematical, as most of the donors may potentially harbour low levels of malaria parasites. Pre-transfusion screening within endemic settings has been identified as a cost-effective option for prevention of transfusion-transmitted malaria (TTM). But currently, there is no screening method that is practical, affordable and suitably sensitive for use by blood banks in SSA. Even if this method was available, rejection of malaria-positive donors would considerably jeopardize the blood supply and increase morbidity and mortality, especially among pregnant women and children who top the scale of blood transfusion users in SSA. In this context, the systematic prophylaxis of recipients with anti-malarials could constitute a good alternative, as it prevents any deferral of donor units as well as the occurrence of TTM. With the on-going programme, namely the Affordable Medicine Facility - Malaria, there is an increase in the availability of low-priced artemisinin-based combination therapy that can be used for systematic prophylaxis. It appears nonetheless an urgent need to conduct cost-benefit studies in order to evaluate each of the TTM preventive methods. This approach could permit the design and implementation of an evidence-based measure of TTM prevention in SSA, advocating thereby its widespread use in the region

    Kondo effect in Complex Quantum Dots in the presence of an oscillating and fluctuating gate signal

    Full text link
    We show how the charge input signal applied to the gate electrode in a double and triple quantum dot may be converted to a pulse in the Kondo cotunneling current being a spin response of a nano-device under a strong Coulomb blockade. The stochastic component of the input signal results in the infrared cutoff of Kondo transmission. The stochastization of the orbital component of the Kondo effect in triple quantum dots results in a noise-induced SU(4) - SU(2) quantum transition.Comment: 16 pages, 12 figure

    Interacting classical and quantum ensembles

    Full text link
    A consistent description of interactions between classical and quantum systems is relevant to quantum measurement theory, and to calculations in quantum chemistry and quantum gravity. A solution is offered here to this longstanding problem, based on a universally-applicable formalism for ensembles on configuration space. This approach overcomes difficulties arising in previous attempts, and in particular allows for backreaction on the classical ensemble, conservation of probability and energy, and the correct classical equations of motion in the limit of no interaction. Applications include automatic decoherence for quantum ensembles interacting with classical measurement apparatuses; a generalisation of coherent states to hybrid harmonic oscillators; and an equation for describing the interaction of quantum matter fields with classical gravity, that implies the radius of a Robertson-Walker universe with a quantum massive scalar field can be sharply defined only for particular `quantized' values.Comment: 31 pages, minor clarifications and one Ref. added, to appear in PR

    On the Decoherence of Primordial Fluctuations During Inflation

    Full text link
    We study the process whereby quantum cosmological perturbations become classical within inflationary cosmology. By setting up a master-equation formulation we show how quantum coherence for super-Hubble modes can be destroyed by their coupling to the environment provided by sub-Hubble modes. We identify what features the sub-Hubble environment must have in order to decohere the longer wavelengths, and identify how the onset of decoherence (and how long it takes) depends on the properties of the sub-Hubble physics which forms the environment. Our results show that the decoherence process is largely insensitive to the details of the coupling between the sub- and super-Hubble scales. They also show how locality implies, quite generally, that the decohered density matrix at late times is diagonal in the field representation (as is implicitly assumed by extant calculations of inflationary density perturbations). Our calculations also imply that decoherence can arise even for couplings which are as weak as gravitational in strength.Comment: 31 pages, 1 figur

    This elusive objective existence

    Full text link
    Zurek's existential interpretation of quantum mechanics suffers from three classical prejudices, including the belief that space and time are intrinsically and infinitely differentiated. They compel him to relativize the concept of objective existence in two ways. The elimination of these prejudices makes it possible to recognize the quantum formalism's ontological implications - the relative and contingent reality of spatiotemporal distinctions and the extrinsic and finite spatiotemporal differentiation of the physical world - which in turn makes it possible to arrive at an unqualified objective existence. Contrary to a widespread misconception, viewing the quantum formalism as being fundamentally a probability algorithm does not imply that quantum mechanics is concerned with states of knowledge rather than states of Nature. On the contrary, it makes possible a complete and strongly objective description of the physical world that requires no reference to observers. What objectively exists, in a sense that requires no qualification, is the trajectories of macroscopic objects, whose fuzziness is empirically irrelevant, the properties and values of whose possession these trajectories provide indelible records, and the fuzzy and temporally undifferentiated states of affairs that obtain between measurements and are described by counterfactual probability assignments.Comment: To appear in IJQI; 21 pages, LaTe

    Are There Quantum Effects Coming from Outside Space-time? Nonlocality, free will and "no many-worlds"

    Full text link
    Observing the violation of Bell's inequality tells us something about all possible future theories: they must all predict nonlocal correlations. Hence Nature is nonlocal. After an elementary introduction to nonlocality and a brief review of some recent experiments, I argue that Nature's nonlocality together with the existence of free will is incompatible with the many-worlds view of quantum physics.Comment: Talk presented at the meeting "Is Science Compatible with Our Desire for Freedom?" organised by the Social Trends Institute at the IESE Business School in Barcelona, Octobre 201

    Robustness and diffusion of pointer states

    Full text link
    Classical properties of an open quantum system emerge through its interaction with other degrees of freedom (decoherence). We treat the case where this interaction produces a Markovian master equation for the system. We derive the corresponding distinguished local basis (pointer basis) by three methods. The first demands that the pointer states mimic as close as possible the local non-unitary evolution. The second demands that the local entropy production be minimal. The third imposes robustness on the inherent quantum and emerging classical uncertainties. All three methods lead to localized Gaussian pointer states, their formation and diffusion being governed by well-defined quantum Langevin equations.Comment: 5 pages, final versio

    Signatures of Extragalactic Dust in pre-Swift GRB Afterglows

    Full text link
    We present the results of a systematic analysis of gamma-ray burst afterglow spectral energy distributions (SEDs) in the optical/near-infrared bands. Our input list includes the entire world sample of afterglows observed in the pre-Swift era by the end of 2004 that have sufficient publicly available data. We apply various dust extinction models to fit the observed SEDs (Milky Way, Large Magellanic Cloud and Small Magellanic Cloud) and derive the corresponding intrinsic extinction in the GRB host galaxies and the intrinsic spectral slopes of the afterglows. We then use these results to explore the parameter space of the power-law index of the electron distribution function and to derive the absolute magnitudes of the unextinguished afterglows.Comment: Submitted to ApJ 25 May 2005, accepted for publication 16 December 2005, updated 22 December 2005. 50 Pages, 12 Figures, 5 Tables. Figures 1a to 1af (30 subfigures) merged into three subfigures with downgraded resolution. Figures 7 and 8 severly downsampled in resolutio
    • …
    corecore