23 research outputs found
Recommended from our members
Status report: The US Department of Energy`s Advanced Turbine Systems Program
ATS is poised to capture the majority of new electric power generation capacity well into the next century. US DOE led the programs supporting the development of ATS technology enabling gas turbine manufacturers to provide ATS systems to the commercial marketplace. A progress report on the ATS program is presented in this paper. The technical challenges, advanced critical technology requirements, and system configurations meeting the goals of the program are discussed
Does a Computer have an Arrow of Time?
In [Sch05a], it is argued that Boltzmann's intuition, that the psychological
arrow of time is necessarily aligned with the thermodynamic arrow, is correct.
Schulman gives an explicit physical mechanism for this connection, based on the
brain being representable as a computer, together with certain thermodynamic
properties of computational processes. [Haw94] presents similar, if briefer,
arguments. The purpose of this paper is to critically examine the support for
the link between thermodynamics and an arrow of time for computers. The
principal arguments put forward by Schulman and Hawking will be shown to fail.
It will be shown that any computational process that can take place in an
entropy increasing universe, can equally take place in an entropy decreasing
universe. This conclusion does not automatically imply a psychological arrow
can run counter to the thermodynamic arrow. Some alternative possible explana-
tions for the alignment of the two arrows will be briefly discussed.Comment: 31 pages, no figures, publication versio
Recommended from our members
Advanced gas turbines: The choice for low-cost, environmentally superior electric power generation
In July 1993, the US Department of Energy (DOE) initiated an ambitious 8-year program to advance state-of-the-art gas turbine technology for land-based electric power generation. The program, known as the Advanced Turbine System (ATS) Program, is a joint government/industry program with the objective to demonstrate advanced industrial and utility gas turbine systems by the year 2000. The goals of the ATS Program are to develop gas turbine systems capable of providing low-cost electric power, while maintaining environmental superiority over competing power generation options. A progress report on the ATS Program pertaining to program status at DOE will be presented and reviewed in this paper. The technical challenges, advanced critical technology requirements, and systems designs meeting the goals of the program will be described and discussed
Recommended from our members
Gas Stream Cleanup
This report describes the current status and recent accomplishments of gas stream cleanup (GSCU) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Gas Stream Cleanup Program is to develop contaminant control strategies that meet environmental regulations and protect equipment in advanced coal conversion systems. Contaminant control systems are being developed for integration into seven advanced coal conversion processes: Pressurized fludized-bed combustion (PFBC), Direct coal-fueled turbine (DCFT), Intergrated gasification combined-cycle (IGCC), Gasification/molten carbonate fuel cell (MCFC), Gasification/solid oxide fuel cell (SOFC), Coal-fueled diesel (CFD), and Mild gasification (MG). These advanced coal conversion systems present a significant challenge for development of contaminant control systems because they generate multi-contaminant gas streams at high-pressures and high temperatures. Each of the seven advanced coal conversion systems incorporates distinct contaminant control strategies because each has different contaminant tolerance limits and operating conditions. 59 refs., 17 figs., 5 tabs
Genetic Ablation of Phosphatidylinositol Transfer Protein Function in Murine Embryonic Stem Cells
Phosphatidylinositol transfer proteins (PITPs) regulate the interface between signal transduction, membrane-trafficking, and lipid metabolic pathways in eukaryotic cells. The best characterized mammalian PITPs are PITPα and PITPβ, two highly homologous proteins that are encoded by distinct genes. Insights into PITPα and PITPβ function in mammalian systems have been gleaned exclusively from cell-free or permeabilized cell reconstitution and resolution studies. Herein, we report for the first time the use of genetic approaches to directly address the physiological functions of PITPα and PITPβ in murine cells. Contrary to expectations, we find that ablation of PITPα function in murine cells fails to compromise growth and has no significant consequence for bulk phospholipid metabolism. Moreover, the data show that PITPα does not play an obvious role in any of the cellular activities where it has been reconstituted as an essential stimulatory factor. These activities include protein trafficking through the constitutive secretory pathway, endocytic pathway function, biogenesis of mast cell dense core secretory granules, and the agonist-induced fusion of dense core secretory granules to the mast cell plasma membrane. Finally, the data demonstrate that PITPα-deficient cells not only retain their responsiveness to bulk growth factor stimulation but also retain their pluripotency. In contrast, we were unable to evict both PITPβ alleles from murine cells and show that PITPβ deficiency results in catastrophic failure early in murine embryonic development. We suggest that PITPβ is an essential housekeeping PITP in murine cells, whereas PITPα plays a far more specialized function in mammals than that indicated by in vitro systems that show PITP dependence
Mouse genetics and metabolic mouse phenotyping.
The mouse is widely considered as a toolbox for modeling human diseases: mice are easy to handle and breed, there exist inbred strains, and the mouse genome sequence is available. Mutant mouse lines can be generated by different technologies, and standardized phenotyping of these mutant mouse lines produces a huge amount of valuable data. Useful resources for the scientific community are archives of mutant lines and strains as well as databases delivering information about the mouse lines and their availability. The phenotypic characterization of mutant mouse lines is the bottleneck within the pipeline from the generation via phenotyping to archiving of mutant mouse lines. Mouse clinics generate large data sets by the standardized, comprehensive phenotypic characterization of mutant mouse lines. There is a portfolio of phenotyping protocols available for a broad spectrum of disease areas that is considered as an international standard. For the investigation of human diseases like diabetes, obesity or the metabolic syndrome, metabolic tests to analyze mutant mouse lines become increasingly important. In this respect, challenge experiments have become the major focus to induce disease phenotypes in mutant mice that would remain undiscovered without the environmental challenges. These experimental setups reflect human conditions, where genetic predisposition and the environmental factors originating from different life style act together and enhance each other