4 research outputs found

    Comparative analysis of microRNA profiles between wild and cultured Haemaphysalis longicornis (Acari, Ixodidae) ticks

    Get PDF
    The miRNA profiles of a Haemaphysalis longicornis wild-type (HLWS) and of a Haemaphysalis longicornis cultured population (HLCS) were sequenced using the Illumina Hiseq 4000 platform combined with bioinformatics analysis and real-time polymerase chain reaction (RT-PCR). A total of 15.63 and 15.48 million raw reads were acquired for HLWS and HLCS, respectively. The data identified 1517 and 1327 known conserved miRNAs, respectively, of which 342 were differentially expressed between the two libraries. Thirty-six novel candidate miRNAs were predicted. To explain the functions of these novel miRNAs, Gene Ontology (GO) analysis was performed. Target gene function prediction identified a significant set of genes related to salivary gland development, pathogen-host interaction and regulation of the defence response to pathogens expressed by wild H. longicornis ticks. Cellular component biogenesis, the immune system process, and responses to stimuli were represented at high percentages in the two tick libraries. GO enrichment analysis showed that the percentages of most predicted functions of the target genes of miRNA were similar, as were certain specific categories of functional enhancements, and that these genes had different numbers and specific functions (e.g., auxiliary transport protein and electron carrier functions). This study provides novel findings showing that miRNA regulation affects the expression of immune genes, indicating a considerable influence of environment-induced stressful stimulation on immune homeostasis. Differences in the living environments of ticks can lead to differences in miRNAs between ticks and provide a basis and a convenient means to screen for genes encoding immune factors in ticks

    Molecular Evidence of Bartonella melophagi in Ticks in Border Areas of Xinjiang, China

    Get PDF
    Bartonella are gram-negative intracellular bacteria; certain species of Bartonella can cause diseases in mammals and humans. Ticks play a major role in the transmission of Bartonella. Xinjiang is the largest province in China according to land area and has one-third of the tick species in China; the infection rate of Bartonella in ticks in the Xinjiang border areas has not been studied in detail. Therefore, this study investigated tick infections by Bartonella in Xinjiang border areas, and the purpose of the study was to fill in gaps in information regarding the genetic diversity of tick infections by Bartonella in Xinjiang. We tested 1,549 tick samples from domestic animals (sheep and cattle) for Bartonella using ribC-PCR. Positive samples from the ribC-PCR assay for Bartonella spp. were further subjected to PCR assays targeting the ITS, rpoB and gltA genes followed by phylogenetic analyses. Bartonella DNA was detected in 2.19% (34/1,549) of tick samples, and the ITS, rpoB and gltA genes of ribC gene-positive samples were amplified to identify nine samples of Bartonella melophagi. In this study, molecular analysis was used to assess the presence and genetic diversity of B. melophagi in ticks collected from sheep and cattle from Xinjiang, China. This study provides new information on the presence and identity of B. melophagi in ticks from sheep and cattle
    corecore