61 research outputs found

    A splicing isoform of TEAD4 attenuates the Hippo–YAP signalling to inhibit tumour proliferation

    Get PDF
    Aberrant splicing is frequently found in cancer, yet the biological consequences of such alterations are mostly undefined. Here we report that the Hippo–YAP signalling, a key pathway that regulates cell proliferation and organ size, is under control of a splicing switch. We show that TEAD4, the transcription factor that mediates Hippo–YAP signalling, undergoes alternative splicing facilitated by the tumour suppressor RBM4, producing a truncated isoform, TEAD4-S, which lacks an N-terminal DNA-binding domain, but maintains YAP interaction domain. TEAD4-S is located in both the nucleus and cytoplasm, acting as a dominant negative isoform to YAP activity. Consistently, TEAD4-S is reduced in cancer cells, and its re-expression suppresses cancer cell proliferation and migration, inhibiting tumour growth in xenograft mouse models. Furthermore, TEAD4-S is reduced in human cancers, and patients with elevated TEAD4-S levels have improved survival. Altogether, these data reveal a splicing switch that serves to fine tune the Hippo–YAP pathway

    In-situ electrical and thermal transport properties of FeySe1-xTex films with ionic liquid gating

    Full text link
    We combine in-situ electrical transport and Seebeck coefficient measurements with the ionic liquid gating technique to investigate superconductivity and the normal state of FeySe1-xTex (FST) films. We find that the pristine FST films feature a non-Fermi liquid temperature dependence of the Seebeck coefficient, i.e., S/T ~ AS lnT, and AS is strongly correlated with the superconducting transition temperature (Tc). Ionic liquid gating significantly raises Tc of FST films, for which the Seebeck coefficient displays a novel scaling behavior and retains the logarithmic temperature dependence. Moreover, a quantitative relationship between the slope of T-linear resistivity (A\r{ho}) and Tc for gated films is observed, i.e., (A\r{ho})1/2 ~ Tc, consistent with previous reports on cuprates and FeSe. The scaling behaviors of AS and A\r{ho} point to a spin-fluctuation-associated transport mechanism in gated FeySe1-xTex superconductors.Comment: 12 pages,5 figure

    Origin of accelerated and hindered sedimentation of two particles in wet foam

    No full text
    To explore the origin of interactional settling behaviors of multi-particles in wet foam, the sedimentation of two particles placed one above the other as well as placed side by side is studied. According to the average settling velocity in experiment and the average settling drag force of the two particles in numerical simulation, we show that the particles display accelerated sedimentation as placed one above the other while they display hindered sedimentation in the case of the ones positioned side by side. Furthermore, the evolution of structure and force parameters of the bubbles, such as T1 topological events, displacement vector and principal stress fields, shows that the reciprocal action between the foam and the settling particles placed side by side is more significant. The different levels of interplay for these two settling cases also give rise to the diverse changes of bubble pressure response. The bubble pressure component of the average drag force is higher for the particles placed side by side. Especially, for the first time, it reveals that these interactional sedimentation behaviors in the foam are mainly attributed to the changed pressure of bubbles caused by these settling particles at the mesoscopic level. The present results may suggest potential explanations to the cause of the complex accelerated or hindered sedimentation of more particles in wet foam

    Stress and bubble pressure response of wet foam to continuous and oscillatory sinusoidal shear

    No full text
    Wet foam, as a typical multiphase soft material, has complex spatial structure. Foam quality (i.e., gas fraction of a foam fluid), one of fundamental structure parameters of a foam system, generally has a significant influence on the mechanical response of the wet foam to the continuous and oscillatory shear. This study shows that the stress level of the wet foam, including the shear stress and the normal stress difference, rises with the foam quality. An exponential link between the yield stress of wet foam and the foam quality is demonstrated. In the oscillatory sinusoidal shear, a frequent fluctuation of the stress curve mainly occurs at the relatively higher strain rate, and the stress state in the foam is still maintained at the end of the oscillatory shear. Further, with the increase of foam quality, the loss modulus decreases when the foam does not yield, while the storage modulus as well as the loss modulus increases as the strain amplitude exceeds a certain value. Additionally, a nonlinear stress response of the wet foam is mainly attributed to the third harmonic component as the strain amplitude increases in the oscillatory shear. In the shear, the average level of bubble pressure in the foam increases with the foam quality, and it fluctuates with the strain owing to the elastic-plastic deformations of the films. Especially, in the oscillatory shear, the average bubble pressure fluctuates more frequently as the strain rate reaches a relatively higher value
    • …
    corecore