525 research outputs found

    DNA Is Different: An Exploration of the Current Inadequacies of Genetic Privacy Protection in Recreational DNA Databases

    Get PDF
    (Excerpt) Part I of this Note discusses the fundamental science behind DNA and defines and explains the process of familial DNA searching. Part I also discusses how Carpenter v. United States provides a framework to begin thinking about the unique nature of DNA and privacy implications for its use, and why the revealing nature of this type of data warrants protection. Part II of this Note delves into the lack of constitutional and statutory protections for DNA in recreational DNA databases. First, Part II explains that traditional Fourth Amendment concepts, like search warrants, probable cause, reasonable expectation of privacy, third-party doctrine, and consent, do not adequately protect or map onto DNA stored in recreational databases. Next, Part II highlights the complete absence of statutory protections for the forensic use of DNA in this particular context. Part III assesses the strength of common arguments intended to minimize the necessity of statutory protection and concludes that they are not persuasive. Such arguments include the strong government interest in being able to use familial searching to solve and prevent crimes, the anonymization of DNA samples to resolve privacy concerns, and the work-intensive nature of familial searching in these databases tending to decrease the likelihood that the technique would be used frequently. Finally, Part IV asserts that statutory protection is the appropriate solution and that it is imperative to protect the genetic information of individuals stored in recreational DNA databases against invasive use by government actors. Part IV also provides an overview of possible regulations

    Origin of lymph node-derived lymphocytes in human hepatic allografts

    Get PDF
    Hepatic allograft-derived lymph nodes were examined in the post-transplant period on order to determine the origin of lymphocytes and structural elements of the lymph node. Histologic assessment and immunohistochemical studies verified that T-cell infiltration of donor lymph nodes by recipient-derived lymphocytes occurred early in the post-transplant period. These T cells bore T-cell activation markers, e.g. TAC receptor and HLA-DR antigens. In addition, functional analysis demonstrated alloreactive T cells in secondary proliferation assays. The pattern of alloreactivity in these assays was dependent upon the phenotypic make-up (and therefore origin) of the lymphocytes within the lymph node. A gradual shift in predominance of donor-derived lymphocytes to recipient-derived lymphocytes occurred, but even late in the post-transplant course the stromal elements and a residium of lymphocytes within the lymph nodes continued to bear donor HLA antigens. The possible role of these 'passenger' lymphocytes in allograft immunity is discussed

    Evidence for engraftment of human bone marrow cells in non-lethally irradiated baboons

    Get PDF
    Background. Prior to organ harvesting, an attempt was made to modulate the donor's immune responses against prospective xenogeneic recipients by infusion of 'recipient-type' bone marrow. Methods. For this purpose, baboons conditioned with total lymphoid irradiation were given 6x108 unmodified human bone marrow cells/kg body weight with no subsequent treatment. Results. Animals survived until they were euthanized at 18 months. Using primers specific for human chorionic gonadotrophin gene, the presence of human DNA was confirmed by polymerase chain reaction in the blood of one animal for up to 18 months after cell transplantation; in the other animal, xenogeneic chimerism became undetectable in the blood at 6 months after bone marrow infusion. However, tissue samples obtained from both animals at the time they were euthanized bad evidence of donor (human) DNA. Additionally, the presence of donor DNA in individually harvested colonies of erythroid and myeloid lineages suggested that infused human bone marrow cells had engrafted across the xenogeneic barrier in both baboons. Conclusions. Bone marrow transplantation from human to baboon leads to establishment of chimerism and modulation of donor-specific immune reactivity, which suggests that this strategy could be reproducibly employed to crease 'surrogate' tolerogenesis in prospective donors for subsequent organ transplantation across xenogeneic barriers

    Cell migration and chimerism after whole‐organ transplantation: The basis of graft acceptance

    Get PDF
    Improvements in the prevention or control of rejection of the kidney and liver have been largely interchangeable (1, 2) and then applicable, with very little modification, to thoracic and other organs. However, the mechanism by which anti rejection treatment permits any of these grafts to be “accepted” has been an immunological enigma (3, 4). We have proposed recently that the exchange of migratory leukocytes between the transplant and the recipient with consequent long-term cellular chimerism in both is the basis for acceptance of all whole-organ allografts and xenografts (5). Although such chimerism was demonstrated only a few months ago, the observations have increased our insight into transplantation immunology and have encouraged the development of alternative therapeutic strategies (6)
    corecore