4 research outputs found

    Design Methods for Rocket Attitude Control Systems Subject to Actuator Saturation

    No full text

    Integrated Ray Tracing Model for End-to-end Performance Verification of Amon-Ra Instrument

    No full text
    The international EARTHSHINE mission is to measure 1% anomaly of the Earth global albedo and total solar irradiance using Amon-Ra instrument around Lagrange point 1. We developed a new ray tracing based integrated end-to-end simulation tool that overcomes the shortcomings of the existing end-to-end performance simulation techniques. We then studied the in-orbit radiometric performance of the breadboard Amon-Ra visible channel optical system. The TSI variation and the Earth albedo anomaly, reported elsewhere, were used as the key input variables in the simulation. The output flux at the instrument focal plane confirms that the integrated ray tracing based end-to-end science simulation delivers the correct level of incident power to the Amon-Ra instrument well within the required measurement error budget of better than ±0.28%. Using the global angular distribution model (ADM), the incident flux is then used to estimate the Earth global albedo and the TSI variation, confirming the validity of the primary science cases at the L1 halo orbit. These results imply that the integrated end-to-end ray tracing technique, reported here, can serve as an effective and powerful building block of the on-line science analysis tool in support of the international EARTHSHINE mission currently being developed

    Optical Performance of Breadboard Amon-Ra Imaging Channel Instrument for Deep Space Albedo Measurement

    No full text
    The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm) in wavefront error, the ensquared energy of 61.7%(in 14 μ m) and the MTF of 35.3%(Nyquist frequency: 35.7 mm^{-1}) at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission
    corecore