21 research outputs found

    Enantioselective Phytotoxicity of the Herbicide Imazethapyr on the Response of the Antioxidant System and Starch Metabolism in Arabidopsis thaliana

    Get PDF
    Background: The enantiomers of a chiral compound possess different biological activities, and one of the enantiomers usually shows a higher level of toxicity. Therefore, the exploration of the causative mechanism of enantioselective toxicity is regarded as one of primary goals of biological chemistry. Imazethapyr (IM) is an acetolactate synthase (ALS)-inhibiting chiral herbicide that has been widely used in recent years with racemate. We investigated the enantioselectivity between R- and S-IM to form reactive oxygen species (ROS) and to regulate antioxidant gene transcription and enzyme activity. Results: Dramatic differences between the enantiomers were observed: the enantiomer of R-IM powerfully induced ROS formation, yet drastically reduced antioxidant gene transcription and enzyme activity, which led to an oxidative stress. The mechanism by which IM affects carbohydrate metabolism in chloroplasts has long remained a mystery. Here we report evidence that enantioselectivity also exists in starch metabolism. The enantiomer of R-IM resulted in the accumulation of glucose, maltose and sucrose in the cytoplasm or the chloroplast and disturbed carbohydrates utilization. Conclusion: The study suggests that R-IM more strongly retarded plant growth than S-IM not only by acting on ALS, but also by causing an imbalance in the antioxidant system and the disturbance of carbohydrate metabolism wit

    Tissue reactions to epoxy-crosslinked porcine heart valves post-treated with detergents or a dicarboxylic acid

    No full text
    Calcification limits the long-term durability of xenograft glutaraldehyde (GA)-crosslinked heart valves. Previously, a study in rats showed that epoxy-crosslinked heart valves reduced lymphocyte reactions to the same extent as the GA-crosslinked control and induced a similar foreign-body response and calcification reaction. The present study was aimed at reducing the occurrence of calcification of epoxy-crosslinked tissue. Two modifications were carried out and their influence on cellular reactions and the extent of calcification after 8 weeks' implantation in weanling rats was evaluated. First, epoxy-crosslinked valves were post-treated with two detergents to remove cellular elements, phospholipids and small soluble proteins, known to act as nucleation sites for calcification. The second approach was to study the effect of the impaired balance between negatively and positively charged amino acids by an additional crosslinking step with a dicarboxylic acid. The detergent treatment resulted in a washed-out appearance of especially the cusp tissue. With the dicarboxylic acid, both the cusps and the walls had a limited washed-out appearance. The wall also demonstrated some detachment of the subendothelium. After implantation, both detergent and dicarboxylic acid post-treatment histologically resulted in reduced calcification at the edges of cusps and walls. However, total amounts of calcification, measured by atomic emission spectroscopy, were not significantly reduced. Data concerning the presence of lymphocytes varied slightly, but were in the same range as the GA-crosslinked control, i.e., clearly reduced compared with a noncrosslinked control. It is concluded that both the double detergent and the dicarboxylic acid post-treatment of epoxy-crosslinked heart valve tissue do not represent a sound alternative in the fabrication of heart valve bioprostheses. (C) 2001 John Wiley & Sons, Inc
    corecore