5,197 research outputs found
Charge breaking bounds in the Zee model
We study the possibility that charge breaking minima occur in the Zee model.
We reach very different conclusions from those attained in simpler, two Higgs
doublet models, and the reason for this is traced back to the existence of
cubic terms in the potential. A scan of the Zee model's parameter space shows
that CB is restricted to a narrow region of values of the parameters
Possible Local Spiral Counterparts to Compact Blue Galaxies at Intermediate Redshift
We identify nearby disk galaxies with optical structural parameters similar
to those of intermediate-redshift compact blue galaxies. By comparing HI and
optical emission-line widths, we show that the optical widths substantially
underestimate the true kinematic widths of the local galaxies. By analogy,
optical emission-line widths may underrepresent the masses of intermediate-z
compact objects. For the nearby galaxies, the compact blue morphology is the
result of tidally-triggered central star formation: we argue that interactions
and minor mergers may cause apparently compact morphology at higher redshift.Comment: 5 pages, uses emulateapj5 and psfig. To appear in ApJ
Collective polarization exchanges in collisions of photon clouds
The one-loop "vacuum" Heisenberg-Euler coupling of four electromagnetic
fields can lead to interesting collective effects in the collision of two
photon clouds, on a time scale orders of magnitude faster than one estimates
from the cross-section and density. We estimate the characteristic time for
macroscopic transformation of positive to negative helicity in clouds that are
initially totally polarized and for depolarization of a polarized beam
traversing an unpolarized cloud.Comment: Recapitulates much that is in hep-ph/0402127, with new results in the
last section, and the first section drastically reduced in view of the
previous work of Kotkin and Serbo. Typo corrected in eq. 1
Generalized Rayleigh and Jacobi processes and exceptional orthogonal polynomials
We present four types of infinitely many exactly solvable Fokker-Planck
equations, which are related to the newly discovered exceptional orthogonal
polynomials. They represent the deformed versions of the Rayleigh process and
the Jacobi process.Comment: 17 pages, 4 figure
New model for the neutrino mass matrix
I suggest a model based on a softly broken symmetry L_e - L_mu - L_tau and on
Babu's mechanism for two-loops radiative generation of the neutrino masses. The
model predicts that one of the physical neutrinos (nu_3) is massless and that
its component along the nu_e direction (U_e3) is zero. Moreover, if the
soft-breaking term is assumed to be very small, then the vacuum oscillations of
nu_e have almost maximal amplitude and solve the solar-neutrino problem. New
scalars are predicted in the 10 TeV energy range, and a breakdown of e-mu-tau
universality should not be far from existing experimental bounds.Comment: 7 pages including 3 figure
Neutrino-Lepton Masses, Zee Scalars and Muon g-2
Evidence for neutrino oscillations is pointing to the existence of tiny but
finite neutrino masses. Such masses may be naturally generated via radiative
corrections in models such as the Zee model where a singlet Zee-scalar plays a
key role. We minimally extend the Zee model by including a right-handed singlet
neutrino \nu_R. The radiative Zee-mechanism can be protected by a simple U(1)_X
symmetry involving only the \nu_R and a Zee-scalar. We further construct a
class of models with a single horizontal U(1)_FN (a la Frogatt-Nielsen) such
that the mass patterns of the neutrinos and leptons are naturally explained. We
then analyze the muon anomalous magnetic moment (g-2) and the flavor changing
\mu --> e\gamma decay. The \nu_R interaction in our minimal extension is found
to induce the BNL g-2 anomaly, with a light charged Zee-scalar of mass 100-300
GeV.Comment: Version for Phys. Rev. Lett. (typos corrected, minor refinements
In your eyes: identifying cliches in song lyrics
We investigated methods for the discovery of cliches from song lyrics. Trigrams and rhyme features were extracted from a collection of lyrics and ranked using term-weighting techniques such as tf-idf. These attributes were also examined over both time and genre. We present an application to produce a cliche score for lyrics based on these ïŹndings and show that number one hits are substantially more cliched than the average published song
Total Infrared Luminosity Estimation of Resolved and Unresolved Galaxies
The total infrared (TIR) luminosity from galaxies can be used to examine both
star formation and dust physics. We provide here new relations to estimate the
TIR luminosity from various Spitzer bands, in particular from the 8 micron and
24 micron bands. To do so, we use 45" subregions within a subsample of nearby
face-on spiral galaxies from the Spitzer Infrared Nearby Galaxies Survey
(SINGS) that have known oxygen abundances as well as integrated galaxy data
from the SINGS, the Local Volume Legacy Survey (LVL) and Engelbracht et al.
(2008) samples. Taking into account the oxygen abundances of the subregions,
the star formation rate intensity, and the relative emission of the polycyclic
aromatic hydrocarbons at 8 micron, the warm dust at 24 micron and the cold dust
at 70 micron and 160 micron we derive new relations to estimate the TIR
luminosity from just one or two of the Spitzer bands. We also show that the
metallicity and the star formation intensity must be taken into account when
estimating the TIR luminosity from two wave bands, especially when data
longward of 24 micron are not available.Comment: 11 pages, 10 figures, accepted for publication in Ap
Joint Evolution of Kin Recognition and Cooperation in Spatially Structured Rhizobium Populations
In the face of costs, cooperative interactions maintained over evolutionary time present a central question in biology. What forces maintain this cooperation? Two potential ways to explain this problem are spatially structured environments (kin selection) and kin-recognition (directed benefits). In a two-locus population genetic model, we investigated the relative roles of spatial structure and kin recognition in the maintenance of cooperation among rhizobia within the rhizobia-legume mutualism. In the case where the cooperative and kin recognition loci are independently inherited, spatial structure alone maintains cooperation, while kin recognition decreases the equilibrium frequency of cooperators. In the case of coinheritance, spatial structure remains a stronger force, but kin recognition can transiently increase the frequency of cooperators. Our results suggest that spatial structure can be a dominant force in maintaining cooperation in rhizobium populations, providing a mechanism for maintaining the mutualistic nodulation trait. Further, our model generates unique and testable predictions that could be evaluated empirically within the legume-rhizobium mutualism
- âŠ