30 research outputs found

    Kinetic, Spectroscopic, and X-Ray Crystallographic Evidence for the Cooperative Mechanism of the Hydration of Nitriles Catalyzed by a Tetranuclear Ruthenium-μ-oxo-μ-hydroxo Complex

    Get PDF
    The tetranuclear ruthenium-oxo-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was found to be a highly cooperative catalyst for the nitrile hydration reaction. The cooperative mechanism of the hydration of benzonitrile was established by Hill inhibition kinetics. The treatment of a nitrile substrate with complex 1 led to the catalytically relevant nitrile-coordinated tetraruthenium complex 3. The X-ray structure of the nitrile-coordinated complex 3 showed a considerably “relaxed” tetrameric core structure compared to that of 1. The hydration of para-substituted benzonitriles p-X-C6H4CN with an electron-withdrawing group (X = Cl, Br, CO2H, CF3) exhibited cooperative kinetics, as indicated by the sigmoidal saturation kinetics, while the hydration of nitriles with an electron-donating group (X = OH, OMe, t-Bu, CH3) obeyed Michaelis–Menten saturation kinetics. The formation of a ruthenium hydride species was observed during the hydration of methacrylonitrile, and its monomeric nature was established by using DOSY NMR techniques

    Inhibitors of Pyruvate Carboxylase

    Get PDF
    This review aims to discuss the varied types of inhibitors of biotin-dependent carboxylases, with an emphasis on the inhibitors of pyruvate carboxylase. Some of these inhibitors are physiologically relevant, in that they provide ways of regulating the cellular activities of the enzymes e.g. aspartate and prohibitin inhibition of pyruvate carboxylase. Most of the inhibitors that will be discussed have been used to probe various aspects of the structure and function of these enzymes. They target particular parts of the structure e.g. avidin – biotin, FTP – ATP binding site, oxamate – pyruvate binding site, phosphonoacetate – binding site of the putative carboxyphosphate intermediate

    Highly Cooperative Tetrametallic Ruthenium-μ-Oxo-μ-Hydroxo Catalyst for the Alcohol Oxidation Reaction

    Get PDF
    The tetrametallic ruthenium-oxo-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was synthesized in two steps from the monomeric complex (PCy3)(CO)RuHCl (2). The tetrameric complex 1 was found to be a highly effective catalyst for the transfer dehydrogenation of alcohols. Complex 1 showed a different catalytic activity pattern toward primary and secondary benzyl alcohols, as indicated by the Hammett correlation for the oxidation reaction of p-X-C6H4CH2OH (ρ = −0.45) and p-X-C6H4CH(OH)CH3 (ρ = +0.22) (X = OMe, CH3, H, Cl, CF3). Both a sigmoidal curve from the plot of initial rate vs [PhCH(OH)CH3] (K0.5 = 0.34 M; Hill coefficient, n = 4.2 ± 0.1) and the phosphine inhibition kinetics revealed the highly cooperative nature of the complex for the oxidation of secondary alcohols

    Insight into the Carboxyl Transferase Domain Mechanism of Pyruvate Carboxylase from \u3cem\u3eRhizobium etli\u3c/em\u3e

    Get PDF
    The effects of mutations in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate, and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain but surprisingly showed 7- and 3.5-fold increases in activity, as compared to that of the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A-catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and removal of a proton from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO2 to form oxaloacetate and complete the reaction

    Probing the Catalytic Roles of Arg548 and Gln552 in the Carboxyl Transferase Domain of the \u3cem\u3eRhizobium etli\u3c/em\u3e Pyruvate Carboxylase by Site-directed Mutagenesis

    Get PDF
    The roles of Arg548 and Gln552 residues in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase were investigated using site-directed mutagenesis. Mutation of Arg548 to alanine or glutamine resulted in the destabilization of the quaternary structure of the enzyme, suggesting that this residue has a structural role. Mutations R548K, Q552N, and Q552A resulted in a loss of the ability to catalyze pyruvate carboxylation, biotin-dependent decarboxylation of oxaloacetate, and the exchange of protons between pyruvate and water. These mutants retained the ability to catalyze reactions that occur at the active site of the biotin carboxylase domain, i.e., bicarbonate-dependent ATP cleavage and ADP phosphorylation by carbamoyl phosphate. The effects of oxamate on the catalysis in the biotin carboxylase domain by the R548K and Q552N mutants were similar to those on the catalysis of reactions by the wild-type enzyme. However, the presence of oxamate had no effect on the reactions catalyzed by the Q552A mutant. We propose that Arg548 and Gln552 facilitate the binding of pyruvate and the subsequent transfer of protons between pyruvate and biotin in the partial reaction catalyzed in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase

    Docosahexaenoic acid lowers cardiac mitochondrial enzyme activity by replacing linoleic acid in the phospholipidome

    Get PDF
    Cardiac mitochondrial phospholipid acyl chains regulate respiratory enzymatic activity. In several diseases, the rodent cardiac phospholipidome is extensively rearranged; however, whether specific acyl chains impair respiratory enzyme function is unknown. One unique remodeling event in the myocardium of obese and diabetic rodents is an increase in docosahexaenoic acid (DHA) levels. Here, we first confirmed that cardiac DHA levels are elevated in diabetic humans relative to controls. We then used dietary supplementation of a Western diet with DHA as a tool to promote cardiac acyl chain remodeling and to study its influence on respiratory enzyme function. DHA extensively remodeled the acyl chains of cardiolipin (CL), mono-lyso CL, phosphatidylcholine, and phosphatidylethanolamine. Moreover, DHA lowered enzyme activities of respiratory complexes I, IV, V, and I+III. Mechanistically, the reduction in enzymatic activities were not driven by a dramatic reduction in the abundance of supercomplexes. Instead, replacement of tetralinoleoyl-CL with tetradocosahexaenoyl-CL in biomimetic membranes prevented formation of phospholipid domains that regulate enzyme activity. Tetradocosahexaenoyl-CL inhibited domain organization due to favorable Gibbs free energy of phospholipid mixing. Furthermore, in vitro substitution of tetralinoleoyl-CL with tetradocosahexaenoyl-CL blocked complex-IV binding. Finally, reintroduction of linoleic acid, via fusion of phospholipid vesicles to mitochondria isolated from DHA-fed mice, rescued the major losses in the mitochondrial phospholipidome and complexes I, IV, and V activities. Altogether, our results show that replacing linoleic acid with DHA lowers select cardiac enzyme activities by potentially targeting domain organization and phospholipid-protein binding, which has implications for the ongoing debate about polyunsaturated fatty acids and cardiac health

    Bioenergetic Phenotyping of DEN-Induced Hepatocellular Carcinoma Reveals a Link Between Adenylate Kinase Isoform Expression and Reduced Complex I-Supported Respiration

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common form of liver cancer worldwide. Increasing evidence suggests that mitochondria play a central role in malignant metabolic reprogramming in HCC, which may promote disease progression. To comprehensively evaluate the mitochondrial phenotype present in HCC, we applied a recently developed diagnostic workflow that combines high-resolution respirometry, fluorometry, and mitochondrial-targeted nLC-MS/MS proteomics to cell culture (AML12 and Hepa 1-6 cells) and diethylnitrosamine (DEN)-induced mouse models of HCC. Across both model systems, CI-linked respiration was significantly decreased in HCC compared to nontumor, though this did not alter ATP production rates. Interestingly, CI-linked respiration was found to be restored in DEN-induced tumor mitochondria through acute in vitro treatment with P1, P5-di(adenosine-5′) pentaphosphate (Ap5A), a broad inhibitor of adenylate kinases. Mass spectrometry-based proteomics revealed that DEN-induced tumor mitochondria had increased expression of adenylate kinase isoform 4 (AK4), which may account for this response to Ap5A. Tumor mitochondria also displayed a reduced ability to retain calcium and generate membrane potential across a physiological span of ATP demand states compared to DEN-treated nontumor or saline-treated liver mitochondria. We validated these findings in flash-frozen human primary HCC samples, which similarly displayed a decrease in mitochondrial respiratory capacity that disproportionately affected CI. Our findings support the utility of mitochondrial phenotyping in identifying novel regulatory mechanisms governing cancer bioenergetics

    Bioenergetic Phenotyping of DEN-Induced Hepatocellular Carcinoma Reveals a Link Between Adenylate Kinase Isoform Expression and Reduced Complex I-Supported Respiration

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common form of liver cancer worldwide. Increasing evidence suggests that mitochondria play a central role in malignant metabolic reprogramming in HCC, which may promote disease progression. To comprehensively evaluate the mitochondrial phenotype present in HCC, we applied a recently developed diagnostic workflow that combines high-resolution respirometry, fluorometry, and mitochondrial-targeted nLC-MS/MS proteomics to cell culture (AML12 and Hepa 1-6 cells) and diethylnitrosamine (DEN)-induced mouse models of HCC. Across both model systems, CI-linked respiration was significantly decreased in HCC compared to nontumor, though this did not alter ATP production rates. Interestingly, CI-linked respiration was found to be restored in DEN-induced tumor mitochondria through acute in vitro treatment with P1, P5-di(adenosine-5′) pentaphosphate (Ap5A), a broad inhibitor of adenylate kinases. Mass spectrometry-based proteomics revealed that DEN-induced tumor mitochondria had increased expression of adenylate kinase isoform 4 (AK4), which may account for this response to Ap5A. Tumor mitochondria also displayed a reduced ability to retain calcium and generate membrane potential across a physiological span of ATP demand states compared to DEN-treated nontumor or saline-treated liver mitochondria. We validated these findings in flash-frozen human primary HCC samples, which similarly displayed a decrease in mitochondrial respiratory capacity that disproportionately affected CI. Our findings support the utility of mitochondrial phenotyping in identifying novel regulatory mechanisms governing cancer bioenergetics

    Synthesis and Characterization of a Tetranuclear Ru(II)-Oxo-Hydroxo Complex and Its Cooperative Activity for Small Molecule Transformations

    No full text
    Allosteric and cooperative enzymes effectively catalyze and regulate a variety of biochemical reactions through induced conformational changes at their active sites. In an attempt to mimic the high chemio- and regioselectivity of these enzymes, recent research has focused on the design and synthesis of synthetic cooperative catalysts. Polynuclear, transition-metal complexes with multiple, adjacent active metal centers are ideal candidates for the construction of catalysts that display cooperative and allosteric activity. Herein, we wish to report the synthesis and complete characterization of a tetranuclear, Ru(II)-oxo-hydroxo complex, {[((PCy3)(CO)Ru(H)]4(μ3-0H)(μ2-0H)(μ.iO)}, 1. The tetranuclear complex was found to have high catalytic activity and selectivity for both the alcohol oxidation and nitrite hydration reactions. Throughout the course of the mechanistic investigation of the reactions, we found compelling evidence for the cooperative activity of 1. Extensive kinetic studies of both mechanisms confirmed the existence of both cooperative and non-cooperative mechanisms. Using spectroscopic, mechanistic, and structural techniques, we have determined certain factors which govern the appearance of the cooperative activity. By understanding the intricacies of the cooperative activity of 1, we can further attenuate the tetranuclear complex in order to fully exploit the cooperative activity of 1 for a wide variety of small molecule transformations
    corecore