187 research outputs found

    Cross Calibration of Imaging Air Cherenkov Telescopes with Fermi

    Full text link
    An updated model for the synchrotron and inverse Compton emission from a population of high energy electrons of the Crab Nebula is used to reproduce the measured spectral energy distribution from radio to high energy gamma-rays. By comparing the predicted inverse Compton component with recent Fermi measurements of the nebula's emission, it is possible to determine the average magnetic field in the nebula and to derive the underlying electron energy distribution. The model calculation can then be used to cross calibrate the Fermi observations with ground based air shower measurements. The resulting energy calibration factors are derived and can be used for combining broad energy measurements taken with Fermi in conjunction with ground based measurements.Comment: 2009 Fermi Symposium, eConf Proceedings C091122, 5 pages, 5 figures, 3 table

    Locating the VHE source in the Galactic Centre with milli-arcsecond accuracy

    Full text link
    Very high-energy gamma-rays (VHE; E>100 GeV) have been detected from the direction of the Galactic Centre up to energies E>10 TeV. Up to now, the origin of this emission is unknown due to the limited positional accuracy of the observing instruments. One of the counterpart candidates is the super-massive black hole (SMBH) Sgr A*. If the VHE emission is produced within ~10^{15} cm ~1000 r_G (r_G=G M/c^2 is the Schwarzschild radius) of the SMBH, a decrease of the VHE photon flux in the energy range 100--300 GeV is expected whenever an early type or giant star approaches the line of sight within ~ milli-arcseconds (mas). The dimming of the flux is due to absorption by pair-production of the VHE photons in the soft photon field of the star, an effect we refer to as pair-production eclipse (PPE). Based upon the currently known orbits of stars in the inner arcsecond of the Galaxy we find that PPEs lead to a systematic dimming in the 100--300 GeV band at the level of a few per cent and lasts for several weeks. Since the PPE affects only a narrow energy band and is well correlated with the passage of the star, it can be clearly discriminated against other systematic or even source-intrinsic effects. While the effect is too small to be observable with the current generation of VHE detectors, upcoming high count-rate experiments like the Cherenkov telescope array (CTA) will be sufficiently sensitive. Measuring the temporal signature of the PPE bears the potential to locate the position and size of the VHE emitting region within the inner 1000 r_G or in the case of a non-detection exclude the immediate environment of the SMBH as the site of gamma-ray production altogether.Comment: 7 pages, published in MNRAS 402, pg. 1342-134

    Discovery of very high energy Îł-ray emission from the BL Lacertae object PKS 0301-243 with H.E.S.S.

    Get PDF
    The active galactic nucleus PKS 0301−243 (z = 0.266) is a high-synchrotron-peaked BL Lac object that is detected at high energies (HE, 100 MeV 100 GeV) by the High Energy Stereoscopic System (H.E.S.S.) from observations between September 2009 and December 2011 for a total live time of 34.9 h. Gamma rays above 200 GeV are detected at a significance of 9.4σ. A hint of variability at the 2.5σ level is found. An integral flux I(E > 200 GeV) = (3.3 ± 1.1stat ± 0.7syst) × 10-12 ph cm-2 s-1 and a photon index Γ = 4.6 ± 0.7stat ± 0.2syst are measured. Multi-wavelength light curves in HE, X-ray and optical bands show strong variability, and a minimal variability timescale of eight days is estimated from the optical light curve. A single-zone leptonic synchrotron self-Compton scenario satisfactorily reproduces the multi-wavelength data. In this model, the emitting region is out of equipartition and the jet is particle dominated. Because of its high redshift compared to other sources observed at TeV energies, the very high energy emission from PKS 0301−243 is attenuated by the extragalactic background light (EBL) and the measured spectrum is used to derive an upper limit on the opacity of the EBL.Fil: Abramowski, A.. Universitat Hamburg; AlemaniaFil: Acero, F.. Universite Montpellier II; FranciaFil: Aharonian, F.. Max Planck Institut fĂŒr Kernphysik; AlemaniaFil: Benkhali, F. Ait. Max Planck Institut fĂŒr Kernphysik; AlemaniaFil: Akhperjanian, A. G.. National Academy of Sciences of the Republic of Armenia; ArmeniaFil: Medina, Maria Clementina. Provincia de Buenos Aires. GobernaciĂłn. Comision de Investigaciones CientĂ­ficas. Instituto Argentino de RadioastronomĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto Argentino de Radioastronomia; ArgentinaFil: Valerius, K.. UniversitĂ€t Erlangen NĂŒrnberg; AlemaniaFil: van Eldik, C.. UniversitĂ€t Erlangen NĂŒrnberg; AlemaniaFil: Vasileiadis, G.. Universite Montpellier II; FranciaFil: Venter, C.. North West University; SudĂĄfricaFil: Viana, A.. Max Planck Institut fĂŒr Kernphysik; AlemaniaFil: Vincent, P.. UniversitĂ© Paris Diderot - Paris 7; FranciaFil: Völk, H. J.. Max Planck Institut fĂŒr Kernphysik; AlemaniaFil: Volpe, F.. Max Planck Institut fĂŒr Kernphysik; AlemaniaFil: Vorster, M.. North West University; SudĂĄfricaFil: Wagner, S. J.. UniversitĂ€t Heidelberg; AlemaniaFil: Wagner, P.. Humboldt UniversitĂ€t zu Berlin; AlemaniaFil: Ward, M.. University Of Durham; Reino UnidoFil: Weidinger, M.. Ruhr-universitĂ€t Bochum; AlemaniaFil: Weitzel, Q.. Max Planck Institut fĂŒr Kernphysik; AlemaniaFil: White, R.. The University of Leicester; Reino UnidoFil: Wierzcholska, A.. Uniwersytet Jagiellonski; PoloniaFil: Willmann, P.. UniversitĂ€t Erlangen NĂŒrnberg; AlemaniaFil: Wörnlein, A.. UniversitĂ€t Erlangen NĂŒrnberg; AlemaniaFil: Wouters, D.. CEA Saclay; FranciaFil: Zacharias, M.. Ruhr-universitĂ€t Bochum; AlemaniaFil: Zajczyk, A.. Universite Montpellier II; FranciaFil: Zdziarski, A. A.. Nicolaus Copernicus Astronomical Center; PoloniaFil: Zech, A.. UniversitĂ© Paris Diderot - Paris 7; FranciaFil: Zechlin, H. S.. Universitat Hamburg; Alemani

    Dark Matter and Fundamental Physics with the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV-TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2-3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10 deg. In the following study, we investigate the prospects for CTA to study several science questions that influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations, we employ a Monte Carlo based approach to evaluate the prospects for detection. First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, in the region close to the Galactic Centre, and in clusters of galaxies. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma rays from very distant blazars. Simulated light-curves of flaring sources are also used to determine the sensitivity to violations of Lorentz Invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA.Comment: (31 pages, Accepted for publication in Astroparticle Physics

    The exceptionally powerful TeV gamma-ray emitters in the Large Magellanic Cloud

    Get PDF
    The Large Magellanic Cloud, a satellite galaxy of the Milky Way, has been observed with the High Energy Stereoscopic System (H.E.S.S.) above an energy of 100 billion electron volts for a deep exposure of 210 hours. Three sources of different types were detected: the pulsar wind nebula of the most energetic pulsar known N 157B, the radio-loud supernova remnant N 132D and the largest non-thermal X-ray shell - the superbubble 30 Dor C. The unique object SN 1987A is, surprisingly, not detected, which constrains the theoretical framework of particle acceleration in very young supernova remnants. These detections reveal the most energetic tip of a gamma-ray source population in an external galaxy, and provide via 30 Dor C the unambiguous detection of gamma-ray emission from a superbubble.Comment: Published in Science Magazine (Jan. 23, 2015). This ArXiv version has the supplementary online material incorporated as an appendix to the main pape

    The patriotism of gentlemen with red hair: European Jews and the liberal state, 1789–1939

    Get PDF
    European Jewish history from 1789–1939 supports the view that construction of national identities even in secular liberal states was determined not only by modern considerations alone but also by ancient patterns of thought, behaviour and prejudice. Emancipation stimulated unprecedented patriotism, especially in wartime, as Jews strove to prove loyalty to their countries of citizenship. During World War I, even Zionists split along national lines, as did families and friends. Jewish patriotism was interchangeable with nationalism inasmuch as Jews identified themselves with national cultures. Although emancipation implied acceptance and an end to anti-Jewish prejudice in the modern liberal state, the kaleidoscopic variety of Jewish patriotism throughout Europe inadvertently undermined the idea of national identity and often provoked anti-Semitism. Even as loyal citizens of separate states, the Jews, however scattered, disunited and diverse, were made to feel, often unwillingly, that they were one people in exile

    Future mmVLBI Research with ALMA: A European vision

    Get PDF
    Very long baseline interferometry at millimetre/submillimetre wavelengths (mmVLBI) offers the highest achievable spatial resolution at any wavelength in astronomy. The anticipated inclusion of ALMA as a phased array into a global VLBI network will bring unprecedented sensitivity and a transformational leap in capabilities for mmVLBI. Building on years of pioneering efforts in the US and Europe the ongoing ALMA Phasing Project (APP), a US-led international collaboration with MPIfR-led European contributions, is expected to deliver a beamformer and VLBI capability to ALMA by the end of 2014 (APP: Fish et al. 2013, arXiv:1309.3519). This report focuses on the future use of mmVLBI by the international users community from a European viewpoint. Firstly, it highlights the intense science interest in Europe in future mmVLBI observations as compiled from the responses to a general call to the European community for future research projects. A wide range of research is presented that includes, amongst others: - Imaging the event horizon of the black hole at the centre of the Galaxy - Testing the theory of General Relativity an/or searching for alternative theories - Studying the origin of AGN jets and jet formation - Cosmological evolution of galaxies and BHs, AGN feedback - Masers in the Milky Way (in stars and star-forming regions) - Extragalactic emission lines and astro-chemistry - Redshifted absorption lines in distant galaxies and study of the ISM and circumnuclear gas - Pulsars, neutron stars, X-ray binaries - Testing cosmology - Testing fundamental physical constantsComment: Replaced figures 2 and 3: corrected position SRT. Corrected minor typo in 5.
    • 

    corecore