2 research outputs found

    General anesthesia reduces complexity and temporal asymmetry of the informational structures derived from neural recordings in Drosophila

    Full text link
    We apply techniques from the field of computational mechanics to evaluate the statistical complexity of neural recording data from fruit flies. First, we connect statistical complexity to the flies' level of conscious arousal, which is manipulated by general anesthesia (isoflurane). We show that the complexity of even single channel time series data decreases under anesthesia. The observed difference in complexity between the two states of conscious arousal increases as higher orders of temporal correlations are taken into account. We then go on to show that, in addition to reducing complexity, anesthesia also modulates the informational structure between the forward- and reverse-time neural signals. Specifically, using three distinct notions of temporal asymmetry we show that anesthesia reduces temporal asymmetry on information-theoretic and information-geometric grounds. In contrast to prior work, our results show that: (1) Complexity differences can emerge at very short timescales and across broad regions of the fly brain, thus heralding the macroscopic state of anesthesia in a previously unforeseen manner, and (2) that general anesthesia also modulates the temporal asymmetry of neural signals. Together, our results demonstrate that anesthetized brains become both less structured and more reversible.Comment: 14 pages, 6 figures. Comments welcome; Added time-reversal analysis, updated discussion, new figures (Fig. 5 & Fig. 6) and Tables (Tab. 1

    Enhancing quantum transport in a photonic network using controllable decoherence

    Get PDF
    Transport phenomena on a quantum scale appear in a variety of systems, ranging from photosynthetic complexes to engineered quantum devices. It has been predicted that the efficiency of quantum transport can be enhanced through dynamic interaction between the system and a noisy environment. We report the first experimental demonstration of such environment-assisted quantum transport, using an engineered network of laser-written waveguides, with relative energies and inter-waveguide couplings tailored to yield the desired Hamiltonian. Controllable decoherence is simulated via broadening the bandwidth of the input illumination, yielding a significant increase in transport efficiency relative to the narrowband case. We show integrated optics to be suitable for simulating specific target Hamiltonians as well as open quantum systems with controllable loss and decoherence.Comment: 6 pages, 3 figure
    corecore