2 research outputs found

    SNHG17 Serves as an Oncogenic lncRNA by Regulating the miR-361-3p/STC2 Axis in Rectal Cancer

    Get PDF
    Long noncoding RNA (lncRNA) have been reported to be crucial regulators for carcinogenesis, including rectal cancer. This work aimed to explore the roles and associated mechanisms of small nucleolar RNA host gene 17 (SNHG17) in rectal cancer. A quantitative real-time polymerase chain reaction was performed to measure the expression level of SNHG17 in rectal cancer tissues and cells. Cell counting kit-8 (CCK-8) assay and flow cytometry assay were conducted to measure the biological roles of SNHG17 in rectal cancer. In addition, luciferase activity reporter assay, RNA immunoprecipitation (RIP) assay, and rescue experiments were conducted to explore the mechanisms of SNHG17 in rectal cancer. The upregulation status of SNHG17 was identified in rectal cancer tissues and cells. Functionally, knockdown the expression of SNHG17 inhibits rectal cancer cell proliferation via stimulating cell apoptosis. In vivo assay showed that the knockdown of SNHG17 inhibits tumor growth. Furthermore, we showed that microRNA-361-3p (miR-361-3p) has decreased expression in tumor tissues and cells, and SNHG17 functions as a sponge for miR-361-3p. The upregulation status of stanniocalcin 2 (STC2) was also found in rectal cancer, and the knockdown of STC2 hinders cancer progression. In conclusion, lncRNA SNHG17 functions as an oncogenic lncRNA in rectal cancer by regulating the miR-361-3p/STC2 axis

    Exploring the effects of Hippo signaling pathway on rumen epithelial proliferation

    No full text
    Abstract Background The current understanding to the mechanism of rumen development is limited. We hypothesized that the Hippo signaling pathway controlled the proliferation of rumen epithelium (RE) during postnatal development. In the present study, we firstly tested the changes of the Hippo signaling pathway in the RE during an early growing period from d5 to d25, and then we expanded the time range to the whole preweaning period (d10-38) and one week post weaning (d45). An in vitro experiment was also carried out to verify the function of Hippo signaling pathway during RE cell proliferation. Results In the RE of lambs from d5 to d25, the expression of baculoviral IAP repeat containing (BIRC3/5) was increased, while the expressions of large tumor suppressor kinase 2 (LATS2), TEA domain transcription factor 3 (TEAD3), axin 1 (AXIN1), and MYC proto-oncogene (MYC) were decreased with rumen growth. From d10 to d38, the RE expressions of BIRC3/5 were increased, while the expressions of LATS2 and MYC were decreased, which were similar with the changes in RE from d5 to d25. From d38 to d45, different changes were observed, with the expressions of LATS1/2, MOB kinase activator 1B (MOB1B), and TEAD1 increased, while the expressions of MST1 and BIRC5 decreased. Correlation analysis showed that during the preweaning period, the RE expressions of BIRC3/5 were positively correlated with rumen development variables, while LAST2 was negatively correlated with rumen development variables. The in vitro experiment validated the changes of LATS2 and BIRC3/5 in the proliferating RE cells, which supported their roles in RE proliferation during preweaning period. Conclusions Our results suggest that the LATS2-YAP1-BIRC3/5 axis participates in the RE cell proliferation and promotes rumen growth during the preweaning period
    corecore