347 research outputs found

    The expression of cytoglobin as a prognostic factor in gliomas: a retrospective analysis of 88 patients

    Get PDF
    BACKGROUND: Evidence suggests that cytoglobin (Cygb) may function as a tumor suppressor gene. METHODS: We immunohistochemically evaluated the expression of Cygb, phosphatidylinositol-3 kinase (PI-3K), phosphorylated (p)-Akt, Interleukin-6 (IL-6), tumor necrosis factor-α (TNFα) and vascular endothelial growth factor (VEGF) in 88 patients with 41 high-grade gliomas and 47 low-grade gliomas. Intratumoral microvessel density (IMD) was also determined and associated with clinicopathological factors. RESULTS: Low expression of Cygb was significantly associated with the higher histological grading and tumor recurrence. A significant negative correlation emerged between Cygb expression and PI3K, p-Akt, IL-6, TNFα or VEGF expression. Cygb expression was negatively correlated with IMD. There was a positive correlation between PI3K, p-Akt, IL-6, TNFα and VEGF expression with IMD.High histologic grade, tumor recurrence, decreased Cygb expression, increased PI3K expression, increased p-Akt expression and increased VEGF expression correlated with patients’ overall survival in univariate analysis. However, only histological grading and Cygb expression exhibited a relationship with survival of patients as independent prognostic factors of glioma by multivariate analysis. CONCLUSIONS: Cygb loss may contribute to tumor recurrence and a worse prognosis in gliomas. Cygb may serve as an independent predictive factor for prognosis of glioma patients

    Luminescent biodegradable polycaprolactone materials prepared by blending with bio-based hyperbranched polymers

    Get PDF

    Two-fold symmetric superconductivity in the kagome superconductor RbV3Sb5

    Full text link
    The recent discovered kagome superconductors provide a good platform for studying intertwined orders and novel states such as topology, superconductor, charge density wave, et al. The interplay of these orders may spontaneously break the rotational symmetry, and induce exotic phenomena such as nematicity, or even nematic superconductor. Here we report a two-fold rotational symmetric superconductivity of thin-film RbV3Sb5 in response to a direction-dependent in-plane magnetic fields, in contrast to the six-fold structural symmetry of the crystal lattice. The two-fold symmetry was evidenced by the magnetoresistance transport experiments, critical magnetic field measurements and the anisotropic superconducting gap. With different configuration, we further observed the six-fold symmetry superimposed on the two-fold symmetry near the boundary between normal states and superconducting states. Our results present the correlation-driven symmetry breaking and highlight the promising platform to study the intertwined orders such as unconventional superconductivity in this correlated kagome family
    corecore