299 research outputs found

    Binary Latent Diffusion

    Full text link
    In this paper, we show that a binary latent space can be explored for compact yet expressive image representations. We model the bi-directional mappings between an image and the corresponding latent binary representation by training an auto-encoder with a Bernoulli encoding distribution. On the one hand, the binary latent space provides a compact discrete image representation of which the distribution can be modeled more efficiently than pixels or continuous latent representations. On the other hand, we now represent each image patch as a binary vector instead of an index of a learned cookbook as in discrete image representations with vector quantization. In this way, we obtain binary latent representations that allow for better image quality and high-resolution image representations without any multi-stage hierarchy in the latent space. In this binary latent space, images can now be generated effectively using a binary latent diffusion model tailored specifically for modeling the prior over the binary image representations. We present both conditional and unconditional image generation experiments with multiple datasets, and show that the proposed method performs comparably to state-of-the-art methods while dramatically improving the sampling efficiency to as few as 16 steps without using any test-time acceleration. The proposed framework can also be seamlessly scaled to 1024Γ—10241024 \times 1024 high-resolution image generation without resorting to latent hierarchy or multi-stage refinements

    Strong Decays of the Orbitally Excited Scalar D0βˆ—D^{*}_{0} Mesons

    Full text link
    We calculate the two-body strong decays of the orbitally excited scalar mesons D0βˆ—(2400)D_0^*(2400) and DJβˆ—(3000)D_J^*(3000) by using the relativistic Bethe-Salpeter (BS) method. DJβˆ—(3000)D_J^*(3000) was observed recently by the LHCb Collaboration, the quantum number of which has not been determined yet. In this paper, we assume that it is the 0+(2P)0^+(2P) state and obtain the transition amplitude by using the PCAC relation, low-energy theorem and effective Lagrangian method. For the 1P1P state, the total widths of D0βˆ—(2400)0D_0^*(2400)^{0} and D0βˆ—(2400)+ D_0^*(2400)^+ are 226 MeV and 246 MeV, respectively. With the assumption of 0+(2P)0^+(2P) state, the widths of DJβˆ—(3000)0D_J^*(3000)^0 and DJβˆ—(3000)+D_J^*(3000)^+ are both about 131 MeV, which is close to the present experimental data. Therefore, DJβˆ—(3000)D_J^*(3000) is a strong candidate for the 23P02^3P_0 state.Comment: 21 pages, 10 figure
    • …
    corecore