98 research outputs found
Experimental Generation of Spin-Photon Entanglement in Silicon Carbide
A solid-state approach for quantum networks is advantages, as it allows the
integration of nanophotonics to enhance the photon emission and the utilization
of weakly coupled nuclear spins for long-lived storage. Silicon carbide,
specifically point defects within it, shows great promise in this regard due to
the easy of availability and well-established nanofabrication techniques.
Despite of remarkable progresses made, achieving spin-photon entanglement
remains a crucial aspect to be realized. In this paper, we experimentally
generate entanglement between a silicon vacancy defect in silicon carbide and a
scattered single photon in the zero-phonon line. The spin state is measured by
detecting photons scattered in the phonon sideband. The photonic qubit is
encoded in the time-bin degree-of-freedom and measured using an unbalanced
Mach-Zehnder interferometer. Photonic correlations not only reveal the quality
of the entanglement but also verify the deterministic nature of the
entanglement creation process. By harnessing two pairs of such spin-photon
entanglement, it becomes straightforward to entangle remote quantum nodes at
long distance.Comment: 8 pages in total, 4 figures in the main text, 1 figure in the
supplemental materia
Myeloid-specific blockade of notch signaling alleviates dopaminergic neurodegeneration in Parkinson’s disease by dominantly regulating resident microglia activation through NF-κB signaling
Yolk sac–derived microglia and peripheral monocyte–derived macrophages play a key role during Parkinson’s disease (PD) progression. However, the regulatory mechanism of microglia/macrophage activation and function in PD pathogenesis remains unclear. Recombination signal–binding protein Jκ (RBP-J)–mediated Notch signaling regulates macrophage development and activation. In this study, with an 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) hydrochloride-induced acute murine PD model, we found that Notch signaling was activated in amoeboid microglia accompanied by a decrease in tyrosine hydroxylase (TH)–positive neurons. Furthermore, using myeloid-specific RBP-J knockout (RBP-JcKO) mice combined with a PD model, our results showed that myeloid-specific disruption of RBP-J alleviated dopaminergic neurodegeneration and improved locomotor activity. Fluorescence-activated cell sorting (FACS) analysis showed that the number of infiltrated inflammatory macrophages and activated major histocompatibility complex (MHC) II+ microglia decreased in RBP-JcKO mice compared with control mice. Moreover, to block monocyte recruitment by using chemokine (C-C motif) receptor 2 (CCR2) knockout mice, the effect of RBP-J deficiency on dopaminergic neurodegeneration was not affected, indicating that Notch signaling might regulate neuroinflammation independent of CCR2+ monocyte infiltration. Notably, when microglia were depleted with the PLX5622 formulated diet, we found that myeloid-specific RBP-J knockout resulted in more TH+ neurons and fewer activated microglia. Ex vitro experiments demonstrated that RBP-J deficiency in microglia might reduce inflammatory factor secretion, TH+ neuron apoptosis, and p65 nuclear translocation. Collectively, our study first revealed that RBP-J–mediated Notch signaling might participate in PD progression by mainly regulating microglia activation through nuclear factor kappa-B (NF-κB) signaling
Joint Effects of Febrile Acute Infection and an Interferon-γ Polymorphism on Breast Cancer Risk
BACKGROUND: There is an inverse relationship between febrile infection and the risk of malignancies. Interferon gamma (IFN-γ) plays an important role in fever induction and its expression increases with incubation at fever-range temperatures. Therefore, the genetic polymorphism of IFN-γ may modify the association of febrile infection with breast cancer risk. METHODOLOGY AND PRINCIPAL FINDINGS: Information on potential breast cancer risk factors, history of fever during the last 10 years, and blood specimens were collected from 839 incident breast cancer cases and 863 age-matched controls between October 2008 and June 2010 in Guangzhou, China. IFN-γ (rs2069705) was genotyped using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry platform. Odds ratios (OR) and 95% confidence intervals (CIs) were calculated using multivariate logistic regression. We found that women who had experienced ≥1 fever per year had a decreased risk of breast cancer [ORs and 95% CI: 0.77 (0.61-0.99)] compared to those with less than one fever a year. This association only occurred in women with CT/TT genotypes [0.54 (0.37-0.77)] but not in those with the CC genotype [1.09 (0.77-1.55)]. The association of IFN-γ rs2069705 with the risk of breast cancer was not significant among all participants, while the CT/TT genotypes were significantly related to an elevated risk of breast cancer [1.32 (1.03-1.70)] among the women with <1 fever per year and to a reduced risk of breast cancer [0.63 (0.40-0.99)] among women with ≥1 fever per year compared to the CC genotype. A marked interaction between fever frequencies and the IFN-γ genotypes was observed (P for multiplicative and additive interactions were 0.005 and 0.058, respectively). CONCLUSIONS: Our findings indicate a possible link between febrile acute infection and a decreased risk of breast cancer, and this association was modified by IFN-γ rs2069705
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Recommended from our members
Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations
We conducted a joint (pooled) analysis of three genome-wide association studies (GWAS) 1-3 of esophageal squamous cell carcinoma (ESCC) in ethnic Chinese (5,337 ESCC cases and 5,787 controls) with 9,654 ESCC cases and 10,058 controls for follow-up. In a logistic regression model adjusted for age, sex, study, and two eigenvectors, two new loci achieved genome-wide significance, marked by rs7447927 at 5q31.2 (per-allele odds ratio (OR) = 0.85, 95% CI 0.82-0.88; P=7.72x10−20) and rs1642764 at 17p13.1 (per-allele OR= 0.88, 95% CI 0.85-0.91; P=3.10x10−13). rs7447927 is a synonymous single nucleotide polymorphism (SNP) in TMEM173 and rs1642764 is an intronic SNP in ATP1B2, near TP53. Furthermore, a locus in the HLA class II region at 6p21.32 (rs35597309) achieved genome-wide significance in the two populations at highest risk for ESSC (OR=1.33, 95% CI 1.22-1.46; P=1.99x10−10). Our joint analysis identified new ESCC susceptibility loci overall as well as a new locus unique to the ESCC high risk Taihang Mountain region
Phosphorus Recovery and Simultaneous Heavy Metal Removal from ISSA in a Two-Compartment Cell
Traditional acid extraction or electrodialytic remediation (EDR) is inefficient to recover phosphorus (P) from incinerated sewage sludge ash (ISSA). This study used a hybrid process including acid extraction and EDR to extract P from ISSA and remove heavy metals/metals from the P extract sequentially. Specifically, the P extract was obtained by extracting ISSA with 0.2 M H2SO4 and a two-compartment cell was applied in the following EDR process. Constant currents of 15 mA, 35 mA and 50 mA were applied for the electromigration of the heavy metals/metals. Results showed that the efficiency of heavy metals/metals removal fluctuated and was relatively low (approximately 20%) under a current of 15 mA. Increasing the current to 35 mA significantly increased the removal efficiency and that of 50 mA was conspicuous, except Fe, Al and As (<50%). Meanwhile, P gradually immigrated to the catholyte after an EDR duration of 96 h. Consistent with heavy metal/metal immigration results, the pH change and 50 mA voltage drop were dramatic (the pH change was 12 and the voltage drop was 11 V). In addition, flocculent precipitates, which were predominantly Ca, P, Al, Mg and Fe, were found in the catholyte
Recommended from our members
Decelerated DNA methylation age predicts poor prognosis of breast cancer
Abstract Background DNA methylation (DNAm) age was found to be an indicator for all-cause mortality, cancer incidence, and longevity, but no study has involved in the associations of DNAm age with the prognosis of breast cancer. Methods We retrieved information of 1076 breast cancer patients from Genomic Data Commons (GDC) data portal on March 30, 2017, including breast cancer DNAm profiling, demographic features, clinicopathological parameters, recurrence, and all-cause fatality. Horvath’s method was applied to calculate the DNAm age. Cox proportional hazards regression models were used to test the associations between DNAm age of the cancerous tissues and the prognosis (recurrence of breast cancer and all-cause fatality) with or without adjusting for chronological age and clinicopathological parameters. Results The DNAm age was markedly decelerated in the patients who were premenopausal, ER or PR negative, HER2-enriched or basal-like than their counterparts. In the first five-year follow-up dataset for survival, every ten-year increase in DNAm age was associated with a 15% decrease in fatality; subjects with DNAm age in the second (HR: 0.52; 95%CI: 0.29–0.92), the third (HR: 0.49; 95%CI: 0.27–0.87) and the fourth quartile (HR: 0.38; 95%CI: 0.20–0.72) had significant longer survival time than those in the first quartile. In the first five-year follow-up dataset for recurrence, every ten-year increase in DNAm age was associated with a 14% decrease of the recurrence; in the categorical analysis, a clear dose-response was shown (P for trend =0.02) and the fourth quartile was associated with a longer recurrence free survival (HR: 0.32; 95%CI: 0.14–0.74). In the full follow-up dataset, similar results were obtained. Conclusions DNAm age of breast cancer tissue, which associated with menopausal status and pathological features, was a strong independent predictor of the prognosis. It was suggested that the prognosis of breast cancer was related to intrinsic biological changes and specific molecular targets for treatment of breast cancer may be implicit
- …