56 research outputs found
Spectral and temporal properties of Compton scattering by mildly relativistic thermal electrons
We have obtained new solutions and methods for the process of thermal. Comptonization, We modify the solution to the kinetic equation of Sunyaev and Titarchuk to allow its application up to mildly relativistic electron temperatures and optical depths = 1, The solution can be used for spectral fitting of X-ray spectra from astrophysical sources, We also have developed an accurate Monte Carlo method for calculating spectra and timing properties of thermal Comptonization sources, The accuracy of our kinetic equation solution is verified by comparison with the Monte Carlo results, We also compare our results with those of other publicly available methods. Furthermore, based on our Monte Carlo code, we present distributions of the photon emission times and the evolution of the average photon energy for both up and down scattering
Hot Jupiters from Secular Planet--Planet Interactions
About 25 per cent of `hot Jupiters' (extrasolar Jovian-mass planets with
close-in orbits) are actually orbiting counter to the spin direction of the
star. Perturbations from a distant binary star companion can produce high
inclinations, but cannot explain orbits that are retrograde with respect to the
total angular momentum of the system. Such orbits in a stellar context can be
produced through secular (that is, long term) perturbations in hierarchical
triple-star systems. Here we report a similar analysis of planetary bodies,
including both octupole-order effects and tidal friction, and find that we can
produce hot Jupiters in orbits that are retrograde with respect to the total
angular momentum. With distant stellar mass perturbers, such an outcome is not
possible. With planetary perturbers, the inner orbit's angular momentum
component parallel to the total angular momentum need not be constant. In fact,
as we show here, it can even change sign, leading to a retrograde orbit. A
brief excursion to very high eccentricity during the chaotic evolution of the
inner orbit allows planet-star tidal interactions to rapidly circularize that
orbit, decoupling the planets and forming a retrograde hot Jupiter.Comment: accepted for publication by Nature, 3 figures (version after proof -
some typos corrected
Resolving the extragalactic hard X-ray background
The origin of the hard (2-10 keV) X-ray background has remained mysterious
for over 35 years. Most of the soft (0.5-2 keV) X-ray background has been
resolved into discrete sources, which are primarily quasars; however, these
sources do not have the flat spectral shape required to match the X-ray
background spectrum. Here we report the results of an X-ray survey 30 times
more sensitive than previous studies in the hard band and four times more
sensitive in the soft band. The sources detected in our survey account for at
least 75 per cent of the hard X-ray background. The mean X-ray spectrum of
these sources is in good agreement with that of the background. The X-ray
emission from the majority of the detected sources is unambiguously associated
with either the nuclei of otherwise normal bright galaxies or optically faint
sources, which could either be active nuclei of dust enshrouded galaxies or the
first quasars at very high redshifts.Comment: Nature article in pres
High energy emission from microquasars
The microquasar phenomenon is associated with the production of jets by X-ray
binaries and, as such, may be associated with the majority of such systems. In
this chapter we briefly outline the associations, definite, probable, possible,
and speculative, between such jets and X-ray, gamma-ray and particle emission.Comment: Contributing chapter to the book Cosmic Gamma-Ray Sources, K.S. Cheng
and G.E. Romero (eds.), to be published by Kluwer Academic Publishers,
Dordrecht, 2004. (19 pages
GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy
We propose to perform a continuously scanning all-sky survey from 200 keV to
80 MeV achieving a sensitivity which is better by a factor of 40 or more
compared to the previous missions in this energy range. The Gamma-Ray Imaging,
Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in
ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS
has its focus on the evolving, violent Universe, exploring a unique energy
window. We propose to investigate -ray bursts and blazars, the
mechanisms behind supernova explosions, nucleosynthesis and spallation, the
enigmatic origin of positrons in our Galaxy, and the nature of radiation
processes and particle acceleration in extreme cosmic sources including pulsars
and magnetars. The natural energy scale for these non-thermal processes is of
the order of MeV. Although they can be partially and indirectly studied using
other methods, only the proposed GRIPS measurements will provide direct access
to their primary photons. GRIPS will be a driver for the study of transient
sources in the era of neutrino and gravitational wave observatories such as
IceCUBE and LISA, establishing a new type of diagnostics in relativistic and
nuclear astrophysics. This will support extrapolations to investigate star
formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic
Vision 2010; 25 p., 25 figs; see also www.grips-mission.e
Generalized Flows around Neutron Stars
In this chapter, we present a brief and non-exhaustive review of the
developments of theoretical models for accretion flows around neutron stars. A
somewhat chronological summary of crucial observations and modelling of timing
and spectral properties are given in sections 2 and 3. In section 4, we argue
why and how the Two-Component Advective Flow (TCAF) solution can be applied to
the cases of neutron stars when suitable modifications are made for the NSs. We
showcase some of our findings from Monte Carlo and Smoothed Particle
Hydrodynamic simulations which further strengthens the points raised in section
4. In summary, we remark on the possibility of future works using TCAF for both
weakly magnetic and magnetic Neutron Stars.Comment: 15 pages, 7 figures. arXiv admin note: text overlap with
arXiv:1901.0084
Accretion Disks Around Black Holes: Twenty Five Years Later
We study the progress of the theory of accretion disks around black holes in
last twenty five years and explain why advective disks are the best bet in
explaining varied stationary and non-stationary observations from black hole
candidates. We show also that the recently proposed advection dominated flows
are incorrect.Comment: 30 Latex pages including figures. Kluwer Style files included.
Appearing in `Observational Evidence for Black Holes in the Universe', ed.
Sandip K. Chakrabarti, Kluwer Academic Publishers (DORDRECHT: Holland
Discovery of extreme particle acceleration in the microquasar Cygnus X-3
The study of relativistic particle acceleration is a major topic of
high-energy astrophysics. It is well known that massive black holes in active
galaxies can release a substantial fraction of their accretion power into
energetic particles, producing gamma-rays and relativistic jets. Galactic
microquasars (hosting a compact star of 1-10 solar masses which accretes matter
from a binary companion) also produce relativistic jets. However, no direct
evidence of particle acceleration above GeV energies has ever been obtained in
microquasar ejections, leaving open the issue of the occurrence and timing of
extreme matter energization during jet formation. Here we report the detection
of transient gamma-ray emission above 100 MeV from the microquasar Cygnus X-3,
an exceptional X-ray binary which sporadically produces powerful radio jets.
Four gamma-ray flares (each lasting 1-2 days) were detected by the AGILE
satellite simultaneously with special spectral states of Cygnus X-3 during the
period mid-2007/mid-2009. Our observations show that very efficient particle
acceleration and gamma-ray propagation out of the inner disk of a microquasar
usually occur a few days before major relativistic jet ejections. Flaring
particle energies can be thousands of times larger than previously detected
maximum values (with Lorentz factors of 105 and 102 for electrons and protons,
respectively). We show that the transitional nature of gamma-ray flares and
particle acceleration above GeV energies in Cygnus X-3 is clearly linked to
special radio/X-ray states preceding strong radio flares. Thus gamma-rays
provide unique insight into the nature of physical processes in microquasars.Comment: 29 pages (including Supplementary Information), 8 figures, 2 tables
version submitted to Nature on August 7, 2009 (accepted version available at
http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature08578.pdf
X-ray Absorption and Reflection in Active Galactic Nuclei
X-ray spectroscopy offers an opportunity to study the complex mixture of
emitting and absorbing components in the circumnuclear regions of active
galactic nuclei, and to learn about the accretion process that fuels AGN and
the feedback of material to their host galaxies. We describe the spectral
signatures that may be studied and review the X-ray spectra and spectral
variability of active galaxies, concentrating on progress from recent Chandra,
XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for
absorption covering a wide range of column densities, ionization and dynamics,
and discuss the growing evidence for partial-covering absorption from data at
energies > 10 keV. Such absorption can also explain the observed X-ray spectral
curvature and variability in AGN at lower energies and is likely an important
factor in shaping the observed properties of this class of source.
Consideration of self-consistent models for local AGN indicates that X-ray
spectra likely comprise a combination of absorption and reflection effects from
material originating within a few light days of the black hole as well as on
larger scales. It is likely that AGN X-ray spectra may be strongly affected by
the presence of disk-wind outflows that are expected in systems with high
accretion rates, and we describe models that attempt to predict the effects of
radiative transfer through such winds, and discuss the prospects for new data
to test and address these ideas.Comment: Accepted for publication in the Astronomy and Astrophysics Review. 58
pages, 9 figures. V2 has fixed an error in footnote
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
- …