11 research outputs found

    MHC class II-deficient mice allow functional human CD4+^{+} T-cell development

    Get PDF
    Humanized mouse models have been developed to study cell-mediated immune responses to human pathogens in vivo. How immunocompetent human T cells are selected in a murine thymus in such humanized mice remains poorly explored. To gain insights into this mechanism, we investigated the differentiation of human immune compartments in mouse MHC class II-deficient immune-compromised mice (humanized Ab0 mice). We observed a strong reduction in human CD4+^{+} T-cell development but despite this reduction Ab0 mice had no disadvantage during Epstein-Barr virus (EBV) infection. Viral loads were equally well controlled in humanized Ab0 mice compared to humanized NSG mice, and improved T-cell recognition of autologous EBV-transformed B cells was observed, especially with respect to cytotoxicity. MHC class II blocking experiments with CD4+^{+} T cells from humanized Ab0 mice demonstrated MHC class II restriction of lymphoblastoid cell line recognition. These findings suggest that a small number of CD4+^{+} T cells in humanized mice can be solely selected on human MHC class II molecules, presumably expressed by reconstituted human immune cells, leading to improved effector functions

    Human CD34+ Hematopoietic Stem Cell–Engrafted NSG Mice: Morphological and Immunophenotypic Features

    Full text link
    Immunodeficient mice engrafted with human immune cells represent an innovative tool to improve translatability of animal models for the study of human diseases. Immunophenotyping in these mice focuses on engraftment rates and cellular differentiation in blood and secondary lymphoid organs, and is predominantly carried out by FACS (fluorescent activated cell sorting) analysis; information on the morphological aspects of engraftment and the prevalence of histologic lesions is limited. We histologically examined 3- to 6-month-old NSG mice, naïve or engrafted with CD34+ human hemopoietic stem cells (HSC), and employed a quantitative immunohistochemical approach to identify human and murine cell compartments, comparing the results with the FACS data. NSG mice mainly exhibited incidental findings in lungs, kidneys, testes, and adrenal glands. A 6-month-old NSG mouse had a mediastinal lymphoblastic lymphoma. The lymphoid organs of NSG mice lacked typical lymphoid tissue architecture but frequently exhibited small periarteriolar leukocyte clusters in the spleen. Mice engrafted with human HSC frequently showed nephropathy, ovarian atrophy, cataract, and abnormal retinal development, lesions considered secondary to irradiation. In addition, 20% exhibited multisystemic granulomatous inflammatory infiltrates, dominated by human macrophages and T cells, leading to the observed 7% mortality and morbidity. Immunophenotypic data revealed variable repopulation of lymphoid organs with hCD45+ human cells, which did not always parallel the engraftment levels measured via FACS. The study describes the most common pathological features in young NSG mice after human HSC engraftment. As some of these lesions contribute to morbidity, morphological assessment of the engraftment at tissue level might help improve immunophenotypic evaluations of this animal model

    Harnessing the Host Immune Response to Infection – BCG Immunotherapy for Bladder Cancer.

    No full text
    International audienceBacillus Calmette–Guérin, or BCG, an avirulent strain of Mycobacterium bovis, was developed as a vaccine for the prevention of tuberculosis. BCG’s success in disease prevention resulted in the vaccination of billions of individuals. The observation that bacterial components could induce tumor regression, coupled with reports that BCG-vaccinated individuals demonstrated reduced cancer incidence, led to the development of BCG as an immunotherapeutic agent. The pioneering work of Morales and colleagues in the 1970s, demonstrating that direct instillation of live BCG into the bladder of patients with nonmuscle invasive bladder cancer prevented tumor recurrence, laid the path for what is arguably the most successful immunotherapy to date. Notably, although much work has focused on how BCG mediates tumor immunity, important unknowns regarding the mechanism of action remain. Nonspecific innate pathways, such as neutrophil-mediated killing, and adaptive immunity, such as induction of BCG- and tumor-specific T cells, likely work in concert to exert anti-tumor effects. Finally, as the mechanisms of action are unraveled, questions of pharmaco-equivalency of BCG substrains have arisen with respect to the clinical management of bladder cancer patients. Thus, while BCG immunotherapy is currently the standard of care for nonmuscle invasive bladder cancer, there exists great opportunity to improve upon this treatment through additional research and clinical trials

    Infection and immune control of human oncogenic γ-herpesviruses in humanized mice

    Full text link
    Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) comprise the oncogenic human γ-herpesvirus family and are responsible for 2-3% of all tumours in man. With their prominent growth-transforming abilities and high prevalence in the human population, these pathogens have probably shaped the human immune system throughout evolution for near perfect immune control of the respective chronic infections in the vast majority of healthy pathogen carriers. The exclusive tropism of EBV and KSHV for humans has, however, made it difficult in the past to study their infection, tumourigenesis and immune control in vivo. Mice with reconstituted human immune system components (humanized mice) support replication of both viruses with both persisting latent and productive lytic infection. Moreover, B-cell lymphomas can be induced by EBV alone and KSHV co-infection with gene expression hallmarks of human malignancies that are associated with both viruses. Furthermore, cell-mediated immune control by primarily cytotoxic lymphocytes is induced upon infection and can be probed for its functional characteristics as well as putative requirements for its priming. Insights that have been gained from this model and remaining questions will be discussed in this review. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'

    Identification of Sex Differences in Tumor-Specific T Cell Infiltration in Bladder Tumor-Bearing Mice Treated with BCG Immunotherapy

    No full text
    International audienceBACKGROUND:Bladder cancer is the fourth most common cancer for men. However, women are often diagnosed with later stage disease and have poorer outcomes. Whether immune-based sex differences contribute to this discrepancy is unclear. In addition, models to investigate tumor-specific immunity in bladder cancer, in the context of tumor development or response to therapy, are lacking.OBJECTIVE:To address this specific unmet need, we incorporated a commonly used model antigen, ovalbumin, into two well-established models of bladder cancer; the orthotopic MB49 cell line model and the carcinogenic BBN bladder cancer model.CONCLUSIONS:We propose our modified BBN model will contribute to our understanding of how tumor-specific immunity arises in bladder cancer. Additionally, the BBN bladder cancer model may help to uncover sex differences in tumor-specific immunity, which would provide valuable information for the development of new treatments or combination therapies for bladder cancer in women and men.METHOD:We tested the utility of these models to investigate tumor-specific immunity in the context of immunotherapy in both sexes.RESULTS:We found that BCG vaccination, prior to weekly BCG instillation does not impart an immune-specific benefit to tumor-bearing mice in the context of multiple BCG instillations. Furthermore, tumors developed in the testes in male mice, precluding the use of the MB49 model to directly investigate sex-based immune differences. In the BBN model, we observed that more tumor antigen-specific CD8+ T cells infiltrated male bladders compared to female bladders in the context of BCG immunotherapy whereas regulatory T cells had higher levels of the exhaustion marker PD-1 in female mice

    Attenuated immune control of Epstein-Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLA-DR15

    Full text link
    Immune responses to Epstein-Barr virus (EBV) infection synergize with the main genetic risk factor HLA-DRB1*15:01 (HLA-DR15) to increase the likelihood to develop the autoimmune disease multiple sclerosis (MS) at least sevenfold. In order to gain insights into this synergy, we investigated HLA-DR15 positive human immune compartments after reconstitution in immune-compromised mice (humanized mice) with and without EBV infection. We detected elevated activation of both CD4+^{+} and CD8+^{+} T cells in HLA-DR15 donor-reconstituted humanized mice at steady state, even when compared to immune compartments carrying HLA-DRB1*04:01 (HLA-DR4), which is associated with other autoimmune diseases. Increased CD8+^{+} T cell expansion and activation was also observed in HLA-DR15 donor-reconstituted humanized mice after EBV infection. Despite this higher immune activation, EBV viral loads were less well controlled in the context of HLA-DR15. Indeed, HLA-DR15-restricted CD4+^{+} T cell clones recognized EBV-transformed B cell lines less efficiently and demonstrated cross-reactivity toward allogeneic target cells and one MS autoantigen. These findings suggest that EBV as one of the main environmental risk factors and HLA-DR15 as the main genetic risk factor for MS synergize by priming hyperreactive T-cell compartments, which then control the viral infection less efficiently and contain cross-reactive CD4+^{+} T cell clones

    Epstein Barr virus-mediated transformation of B cells from XIAP-deficient patients leads to increased expression of the tumor suppressor CADM1

    Full text link
    X-linked lymphoproliferative disease (XLP) is either caused by loss of the SLAM-associated protein (SAP; XLP-1) or the X-linked inhibitor of apoptosis (XIAP; XLP-2). In both instances, infection with the oncogenic human Epstein Barr virus (EBV) leads to pathology, but EBV-associated lymphomas only emerge in XLP-1 patients. Therefore, we investigated the role of XIAP during B cell transformation by EBV. Using humanized mice, IAP inhibition in EBV-infected mice led to a loss of B cells and a tendency to lower viral titers and lymphomagenesis. Loss of memory B cells was also observed in four newly described patients with XIAP deficiency. EBV was able to transform their B cells into lymphoblastoid cell lines (LCLs) with similar growth characteristics to patient mothers' LCLs in vitro and in vivo. Gene expression analysis revealed modest elevated lytic EBV gene transcription as well as the expression of the tumor suppressor cell adhesion molecule 1 (CADM1). CADM1 expression on EBV-infected B cells might therefore inhibit EBV-associated lymphomagenesis in patients and result in the absence of EBV-associated malignancies in XLP-2 patients

    CD27 is required for protective lytic EBV antigen-specific CD8+ T-cell expansion

    Full text link
    Primary immunodeficiencies in the costimulatory molecule CD27 and its ligand, CD70, predispose for pathologies of uncontrolled Epstein-Barr virus (EBV) infection in nearly all affected patients. We demonstrate that both depletion of CD27+ cells and antibody blocking of CD27 interaction with CD70 cause uncontrolled EBV infection in mice with reconstituted human immune system components. While overall CD8+ T-cell expansion and composition are unaltered after antibody blocking of CD27, only some EBV-specific CD8+ T-cell responses, exemplified by early lytic EBV antigen BMLF1-specific CD8+ T cells, are inhibited in their proliferation and killing of EBV-transformed B cells. This suggests that CD27 is not required for all CD8+ T-cell expansions and cytotoxicity but is required for a subset of CD8+ T-cell responses that protect us from EBV pathology

    CD8+ T cells retain protective functions despite sustained inhibitory receptor expression during Epstein-Barr virus infection in vivo

    Get PDF
    Epstein Barr virus (EBV) is one of the most ubiquitous human pathogens in the world, persistently infecting more than 90% of the adult human population. It drives some of the strongest human CD8+ T cell responses, which can be observed during symptomatic primary infection known as infectious mononucleosis (IM). Despite high viral loads and prolonged CD8+ T cell stimulation during IM, EBV enters latency and is under lifelong immune control in most individuals that experience this disease. We investigated whether changes in T cell function, as frequently characterized by PD-1 up-regulation, occur during IM due to the prolonged exposure to high antigen levels. We readily detected the expansion of PD-1 positive CD8+ T cells together with high frequencies of Tim-3, 2B4, and KLRG1 expression during IM and in mice with reconstituted human immune system components (huNSG mice) that had been infected with a high dose of EBV. These PD-1 positive CD8+ T cells, however, retained proliferation, cytokine production, and cytotoxic abilities. Multiple subsets of CD8+ T cells expanded during EBV infection, including PD-1+Tim-3+KLRG1+ cells that express CXCR5 and TCF-1 germinal center homing and memory markers, and may also contain BATF3. Moreover, blocking the PD-1 axis compromised EBV specific immune control and resulted in virus-associated lymphomagenesis. Finally, PD-1+, Tim-3+, and KLRG1+ CD8+ T cell expansion coincided with declining viral loads during low dose EBV infection. These findings suggest that EBV infection primes PD-1 positive CD8+ T cell populations that rely on this receptor axis for the efficient immune control of this ubiquitous human tumor virus
    corecore