13 research outputs found

    A non-enzymatic function of 17 beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival

    Get PDF
    Deficiency of the mitochondrial enzyme 2-methyl-3-hydroxybutyryl-CoA dehydrogenase involved in isoleucine metabolism causes an organic aciduria with atypical neurodegenerative course. The disease-causing gene is HSD17B10 and encodes 17beta-hydroxysteroid dehydrogenase type 10 (HSD10), a protein also implicated in the pathogenesis of Alzheimer's disease. Here we show that clinical symptoms in patients are not correlated with residual enzymatic activity of mutated HSD10. Loss-of-function and rescue experiments in Xenopus embryos and cells derived from conditional Hsd17b10(-/-) mice demonstrate that a property of HSD10 independent of its enzymatic activity is essential for structural and functional integrity of mitochondria. Impairment of this function in neural cells causes apoptotic cell death whilst the enzymatic activity of HSD10 is not required for cell survival. This finding indicates that the symptoms in patients with mutations in the HSD17B10 gene are unrelated to accumulation of toxic metabolites in the isoleucine pathway and, rather, related to defects in general mitochondrial function. Therefore alternative therapeutic approaches to an isoleucine-restricted diet are required

    Positive and negative affect in illusion of control

    No full text

    Soluble RAGE but not endogenous secretory RAGE is associated with albuminuria in patients with type 2 diabetes

    No full text
    Abstract Background Total circulating soluble receptor for advanced glycation endproducts (sRAGE) and a more defined endogenous secretory splice variant of the receptor (esRAGE) were shown to be associated with different markers of cardiovascular risk in patients with diabetes. Since previous data were partly divergent, the aim of this study was to compare sRAGE and esRAGE in a head-to-head analysis in patients with type 2 diabetes (T2DM) with albuminuria. Methods sRAGE and esRAGE were studied in plasma of 110 T2DM patients using enzyme-linked immunosorbant assays (ELISA) detecting either sRAGE or esRAGE only. Both sRAGE and esRAGE were compared with regard to applicability as markers for vascular disease and glucose control in T2DM. Results In bivariate analysis, sRAGE correlated with age (R = 0.22, p = 0.02) and the 24 hour albumin excretion rate (R = 0.18, p = 0.05), while esRAGE correlated positively with age only (R = 0.23, p = 0.02). In contrast to previous reports, neither sRAGE nor esRAGE correlated with glucose control or intima-media-thickness (IMT) as a predictor of macrovascular disease. In multivariate regression models, the associations between sRAGE and albuminuria as well as esRAGE and age were shown to be independent of glucose control, diabetes duration, body-mass index, glomerular filtration rate, blood pressure and gender. Conclusion This is the first study comparing sRAGE and esRAGE as markers of vascular complications in patients with T2DM. sRAGE but not esRAGE is independently associated with albuminuria in these patients while neither sRAGE nor esRAGE are associated with markers of glucose control or macrovascular disease.</p

    A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival

    No full text
    Deficiency of the mitochondrial enzyme 2-methyl-3-hydroxybutyryl-CoA dehydrogenase involved in isoleucine metabolism causes an organic aciduria with atypical neurodegenerative course. The disease-causing gene is HSD17B10 and encodes 17beta-hydroxysteroid dehydrogenase type 10 (HSD10), a protein also implicated in the pathogenesis of Alzheimer's disease. Here we show that clinical symptoms in patients are not correlated with residual enzymatic activity of mutated HSD10. Loss-of-function and rescue experiments in Xenopus embryos and cells derived from conditional Hsd17b10(-/-) mice demonstrate that a property of HSD10 independent of its enzymatic activity is essential for structural and functional integrity of mitochondria. Impairment of this function in neural cells causes apoptotic cell death whilst the enzymatic activity of HSD10 is not required for cell survival. This finding indicates that the symptoms in patients with mutations in the HSD17B10 gene are unrelated to accumulation of toxic metabolites in the isoleucine pathway and, rather, related to defects in general mitochondrial function. Therefore alternative therapeutic approaches to an isoleucine-restricted diet are required
    corecore