20 research outputs found

    Water Vapor Sorption on the Surface of Selected Organic Samples in an Artificial Static Magnetic Field of 10 mT

    Get PDF
    This paper presents one of the aspects of a wide range of challenges related to space exploration. The main factor making it possible for humans to engage in space exploration is the provision of a basic element of existence, which is stable quality food. The starting point for the conducted research was the assumption that surface phenomena, involving water and determining food stability, can occur with different intensities under extra-terrestrial conditions. The results of this study describe the effect of the 10 mT static magnetic field on the process of water vapor particle adsorption and desorption on the surface of organic samples. The research material included powders with hygroscopic properties: gelatin (protein) and starch (carbohydrates). The research included a comparison of the direction, dynamics, and range of water vapor sorption in control conditions in a homogenous, static magnetic field. The research involved the use of desiccators with aqueous saturated solutions of NaOH and NaCl, and a static magnetic field generator. The obtained results indicate that magnetic field has an effect on the course of sorption on organic samples, and it can determine food stability during storage. The results of this work also indicate that there is the potential for reducing the costs of food preservation by drying it in the presence of a magnetic field; the study introduces innovative solutions in the construction of cereal silos, which is part of the concept of sustainable development

    Monte Carlo Radiative Transfer Simulation to Analyze the Spectral Index for Remote Detection of Oil Dispersed in the Southern Baltic Sea Seawater Column: The Role of Water Surface State

    No full text
    The article presents the results of simulations that take into account the optical parameters of the selected sea region (from literature data on the southern Baltic Sea) and two optically extreme types of crude oil (from historical data) which exist in the form of a highly watered-down oil-in-water emulsion (10 ppm). The spectral index was analyzed based on the results of modeling the radiance reflectance distribution for almost an entire hemisphere of the sky (zenith angle from 0 to 80°). The spectral index was selected and is universal for all optically different types of oil (wavelengths of 650 and 412 nm). The possibility of detecting pollution in the conditions of the wavy sea surface (as a result of wind of up to 10 m/s) was studied. It was also shown that if the viewing direction is close to a direction perpendicular to the sea surface, observations aimed at determining the spectral index are less effective than observations under the zenith angle of incidence of sunlight for all azimuths excluding the direction of sunlight’s specular reflection

    Oil Droplet Clouds Suspended in the Sea: Can They Be Remotely Detected?

    No full text
    Oil floating on the sea surface can be detected by both passive and active methods using the ultraviolet-to-microwave spectrum, whereas oil immersed below the sea surface can signal its presence only in visible light. This paper presents an optical model representing a selected case of the sea polluted by an oil suspension for a selected concentration (10 ppm) located in a layer of exemplary thickness (5 m) separated from the sea surface by an unpolluted layer (thickness 1 m). The impact of wavelength and state of the sea surface on reflectance changes is presented based on the results of Monte Carlo ray tracing. A two-wavelength index of reflectance is proposed to detect oil suspended in the water column (645–469 nm)

    Modelling the bidirectional reflectance distribution functions (BRDF) of sea areas polluted by oil

    No full text
    The paper discusses the possibilities of modelling the bi-directional reflectance distribution function (BRDF) in sea areas polluted by oil. Three sea basin models are considered: a coastal one free of oil, one polluted by an oil film and one polluted by an oil emulsion. The following concentrations of oil were compared: for the film, 1 cm3 of oil per 1 m2 water surface, for the emulsion 1 cm3 of oil in 1 m3 of water. The optical properties of Romashkino crude oil were taken into consideration, as were various angles of incident solar light. The conversion of BRDFs into a directional distribution of the optical contrast of polluted areas is demonstrated

    Monte Carlo Radiative Transfer Simulation to Analyze the Spectral Index for Remote Detection of Oil Dispersed in the Southern Baltic Sea Seawater Column: The Role of Water Surface State

    No full text
    The article presents the results of simulations that take into account the optical parameters of the selected sea region (from literature data on the southern Baltic Sea) and two optically extreme types of crude oil (from historical data) which exist in the form of a highly watered-down oil-in-water emulsion (10 ppm). The spectral index was analyzed based on the results of modeling the radiance reflectance distribution for almost an entire hemisphere of the sky (zenith angle from 0 to 80°). The spectral index was selected and is universal for all optically different types of oil (wavelengths of 650 and 412 nm). The possibility of detecting pollution in the conditions of the wavy sea surface (as a result of wind of up to 10 m/s) was studied. It was also shown that if the viewing direction is close to a direction perpendicular to the sea surface, observations aimed at determining the spectral index are less effective than observations under the zenith angle of incidence of sunlight for all azimuths excluding the direction of sunlight’s specular reflection

    Detection of Oil in Seawater Based on the Fluorometric Index during the Winter Season in the Baltic Sea—The Case of the Gulf of Gdansk

    No full text
    This study is a continuation of analyses of the fluorometric index (FI), based on the fluorescence of substances of oil origin, as an indicator of oil in a seawater column. The effectiveness of the FI in the cold season (late autumn, winter and early spring) for the coastal water in the southern Baltic Sea was assessed. FI was tested for seawater polluted with a mixture of crude oils, lubricating oils and fuels. Laboratory analyses of oil–water systems for low (reaching the limit of detection) oil content in seawater were performed. The influences of the natural components of seawater that disrupt oil detection are discussed. The ability to detect oil in a seawater column regardless of the season was confirmed

    Physical Fields During Construction and Operation of Wind Farms by Example of Polish Maritime Areas

    No full text
    The article discusses an important issue of technical pressure exerted on the marine environment during construction and operation of maritime wind farms (MFW) on waters of the Polish Exclusive Economic Zone. A motivation for analysing this issue is the need for attracting attention to the aspect of physical field modification as the factor which links large scale technical activity at sea with the existence and functioning of the marine ecosystem, including further consequences to its economic benefits. Based on current knowledge and authors' analyses, the scale of modifications (disturbances) of physical fields expected to take place during MFW construction and operation was assessed

    Fluorometric Detection of Oil Traces in a Sea Water Column

    No full text
    This study focuses on broadening the knowledge of a fluorometric index to improve the detection of oil substances present in the marine environment. It is assumed that the value of this index will provide information about a possible oil discharge at some distance from the sensor. In this paper, the detection of oil present in seawater as a mixture of oils such as fuel, lubricate oil, or crude oil based on a fluorescence indicator-fluorometric index (FIo/w) is discussed. FIo/w was defined based on specific excitation and emission wavelengths coming from the obtained excitation–emission spectrum (EEM) of oil-free seawater and, in parallel, the same water but artificially polluted with oil. For this, measurements of a mixture of oils in seawater for an oil-to-water ratio in the range from 50 × 10−9 to 200 × 10−9 as well as oil-free seawater were performed. Laboratory measurements continued five times in months in the summer season with the coastal waters of the southern Baltic Sea (last spring, summer, and early autumn). The dependence of FIo/w on the presence of oil in seawater, the oil-in-water ratio, as well as months of the considered season has been demonstrated

    Physical Fields During Construction and Operation of Wind Farms by Example of Polish Maritime Areas

    No full text
    The article discusses an important issue of technical pressure exerted on the marine environment during construction and operation of maritime wind farms (MFW) on waters of the Polish Exclusive Economic Zone. A motivation for analysing this issue is the need for attracting attention to the aspect of physical field modification as the factor which links large scale technical activity at sea with the existence and functioning of the marine ecosystem, including further consequences to its economic benefits. Based on current knowledge and authors' analyses, the scale of modifications (disturbances) of physical fields expected to take place during MFW construction and operation was assessed
    corecore