32 research outputs found

    An Immunological Marker of Tolerance to Infection in Wild Rodents

    Get PDF
    Hosts are likely to respond to parasitic infections by a combination of resistance (expulsion of pathogens) and tolerance (active mitigation of pathology). Of these strategies, the basis of tolerance in animal hosts is relatively poorly understood, with especially little known about how tolerance is manifested in natural populations. We monitored a natural population of field voles using longitudinal and cross-sectional sampling modes and taking measurements on body condition, infection, immune gene expression, and survival. Using analyses stratified by life history stage, we demonstrate a pattern of tolerance to macroparasites in mature compared to immature males. In comparison to immature males, mature males resisted infection less and instead increased investment in body condition in response to accumulating burdens, but at the expense of reduced reproductive effort. We identified expression of the transcription factor Gata3 (a mediator of Th2 immunity) as an immunological biomarker of this tolerance response. Time series data for individual animals suggested that macroparasite infections gave rise to increased expression of Gata3, which gave rise to improved body condition and enhanced survival as hosts aged. These findings provide a clear and unexpected insight into tolerance responses (and their life history sequelae) in a natural vertebrate population. The demonstration that such responses (potentially promoting parasite transmission) can move from resistance to tolerance through the course of an individual’s lifetime emphasises the need to incorporate them into our understanding of the dynamics and risk of infection in the natural environment. Moreover, the identification of Gata3 as a marker of tolerance to macroparasites raises important new questions regarding the role of Th2 immunity and the mechanistic nature of the tolerance response itself. A more manipulative, experimental approach is likely to be valuable in elaborating this further

    Sox2 Sustains Recruitment of Oligodendrocyte Progenitor Cells following CNS Demyelination and Primes Them for Differentiation during Remyelination.

    Get PDF
    UNLABELLED: The Sox family of transcription factors have been widely studied in the context of oligodendrocyte development. However, comparatively little is known about the role of Sox2, especially during CNS remyelination. Here we show that the expression of Sox2 occurs in oligodendrocyte progenitor cells (OPCs) in rodent models during myelination and in activated adult OPCs responding to demyelination, and is also detected in multiple sclerosis lesions. In normal adult white matter of both mice and rats, it is neither expressed by adult OPCs nor by oligodendrocytes (although it is expressed by a subpopulation of adult astrocytes). Overexpression of Sox2 in rat OPCs in vitro maintains the cells in a proliferative state and inhibits differentiation, while Sox2 knockout results in decreased OPC proliferation and survival, suggesting that Sox2 contributes to the expansion of OPCs during the recruitment phase of remyelination. Loss of function in cultured mouse OPCs also results in an impaired ability to undergo normal differentiation in response to differentiation signals, suggesting that Sox2 expression in activated OPCs also primes these cells to eventually undergo differentiation. In vivo studies on remyelination following experimental toxin-induced demyelination in mice with inducible loss of Sox2 revealed impaired remyelination, which was largely due to a profound attenuation of OPC recruitment and likely also due to impaired differentiation. Our results reveal a key role of Sox2 expression in OPCs responding to demyelination, enabling them to effectively contribute to remyelination. SIGNIFICANCE STATEMENT: Understanding the mechanisms of CNS remyelination is central to developing effective means by which this process can be therapeutically enhanced in chronic demyelinating diseases such as multiple sclerosis. In this study, we describe the role of Sox2, a transcription factor widely implicated in stem cell biology, in CNS myelination and remyelination. We show how Sox2 is expressed in oligodendrocyte progenitor cells (OPCs) preparing to undergo differentiation, allowing them to undergo proliferation and priming them for subsequent differentiation. Although Sox2 is unlikely to be a direct therapeutic target, these data nevertheless provide more information on how OPC differentiation is controlled and therefore enriches our understanding of this important CNS regenerative process.This work was mainly supported by the UK Multiple Sclerosis Society.This is the final version of the article. It first appeared from the Society for Neuroscience via http://dx.doi.org/10.1523/JNEUROSCI.3655-14.201
    corecore