166 research outputs found

    The Compact Central Object in Cas A: A Neutron Star with Hot Polar Caps or a Black Hole?

    Get PDF
    The central pointlike X-ray source of the Cas A supernova remnant was discovered in the Chandra First Light Observation and found later in the archival ROSAT and Einstein images. The analysis of these data does not show statistically significant variability of the source. The power-law fit yields the photon index 2.6-4.1, and luminosity (2-60)e34 erg/s, for d=3.4 kpc. The power-law index is higher, and the luminosity lower, than those observed fromvery young pulsars. One can fit the spectrum equally well with a blackbody model with T=6-8 MK, R=0.2-0.5 km, L=(1.4-1.9)e33 erg/s. The inferred radii are too small, and the temperatures too high, for the radiationcould be interpreted as emitted from the whole surface of a uniformly heated neutron star. Fits with the neutron star atmosphere models increase the radius and reduce the temperature, but these parameters are still substantially different from those expected for a young neutron star. One cannot exclude, however, that the observed emission originates from hot spots on a cooler neutron star surface. Because of strong interstellar absorption, the possible low-temperature component gives a small contribution to the observed spectrum; an upper limit on the (gravitationally redshifted) surface temperature is < 1.9-2.3 MK. Amongst several possible interpretations, we favor a model of a strongly magnetized neutron star with magnetically confined hydrogen or helium polar caps on a cooler iron surface. Alternatively, the observed radiation may be interpreted as emitted by a compact object (more likely, a black hole) accreting from a fossil disk or from a late-type dwarf in a close binary.Comment: 12 pages, 2 figures, submitted to ApJ

    Using Chandra to Unveil the High-Energy Properties of the High-Magnetic Field Radio Pulsar J1119-6127

    Full text link
    (shortened) PSR J1119-6127 is a high magnetic field (B=4.1E13 Gauss), young (<=1,700 year-old), and slow (P=408 ms) radio pulsar associated with the supernova remnant (SNR) G292.2-0.5. In 2003, Chandra allowed the detection of the X-ray counterpart of the radio pulsar, and provided the first evidence for a compact pulsar wind nebula (PWN). We here present new Chandra observations which allowed for the first time an imaging and spectroscopic study of the pulsar and PWN independently of each other. The PWN is only evident in the hard band and consists of jet-like structures extending to at least 7" from the pulsar, with the southern `jet' being longer than the northern `jet'. The spectrum of the PWN is described by a power law with a photon index~1.1 for the compact PWN and ~1.4 for the southern long jet (at a fixed column density of 1.8E22/cm2), and a total luminosity of 4E32 ergs/s (0.5-7 keV), at a distance of 8.4 kpc. The pulsar's spectrum is clearly softer than the PWN's spectrum. We rule out a single blackbody model for the pulsar, and present the first evidence of non-thermal (presumably magnetospheric) emission that dominates above ~3keV. A two-component model consisting of a power law component (with photon index ~1.5--2.0) plus a thermal component provides the best fit. The thermal component can be fit by either a blackbody model with a temperature kT~0.21 keV, or a neutron star atmospheric model with a temperature kT~0.14 keV. The efficiency of the pulsar in converting its rotational power, Edot, into non-thermal X-ray emission from the pulsar and PWN is ~5E-4, comparable to other rotation-powered pulsars with a similar Edot. We discuss our results in the context of the X-ray manifestation of high-magnetic field radio pulsars in comparison with rotation-powered pulsars and magnetars.Comment: 26 pages including 3 tables and 7 figures. Accepted for publication in Ap

    Quiescent Thermal Emission from the Neutron Star in Aql X-1

    Get PDF
    We report on the quiescent spectrum measured with Chandra/ACIS-S of the transient, type-I X-ray bursting neutron star Aql X-1, immediately following an accretion outburst. The neutron star radius, assuming a pure hydrogen atmosphere and hard power-law spectrum, is R∞R_\infty=13.4{+5}{-4} (d/5 \kpc) km. Based on the historical outburst record of RXTE/ASM, the quiescent luminosity is consistent with that predicted by Brown, Bildsten and Rutledge from deep crustal heating, lending support to this theory for providing a minimum quiescent luminosity of transient neutron stars. While not required by the data, the hard power-law component can account for 18+/-8% of the 0.5-10 keV thermal flux. Short-timescale intensity variability during this observation is less than 15% rms (3 sigma; 0.0001-1 Hz, 0.2-8 keV). Comparison between the Chandra spectrum and three X-ray spectral observations made between Oct 1992 and Oct 1996 find all spectra consistent with a pure H atmosphere, but with temperatures ranging from 145--168 eV, spanning a factor of 1.87+/-0.21 in observed flux. The source of variability in the quiescent luminosity on long timescales (greater than years) remains a puzzle. If from accretion, then it remains to be explained why the quiescent accretion rate provides a luminosity so nearly equal to that from deep crustal heating.Comment: 15 pages, 1 figure, 2 tables; ApJ, accepte

    Evidence for a Binary Companion to the Central Compact Object 1E 1207.4-5209

    Get PDF
    Unique among neutron stars, 1E 1207.4-5209 is an X-ray pulsar with a spin period of 424 ms that contains at least two strong absorption features in its energy spectrum. This neutron star has been identified as a member of the radio-quiet compact central objects in supernova remnants. It has been found that 1E 1207.4-5209 is not spinning down monotonically suggesting that this neutron star undergoes strong, frequent glitches, contains a fall-back disk, or possess a binary companion. Here, we report on a sequence of seven XMM-Newton observations of 1E 1207.4-5209 performed during a 40 day window in June/July 2005. Due to unanticipated variance in the phase measurements beyond the statistical uncertainties, we could not identify a unique phase-coherent timing solution. The three most probable timing solutions give frequency time derivatives of +0.9, -2.6, and +1.6 X 10^(-12) Hz/s (listed in descending order of significance). We conclude that the local frequency derivative during our XMM-Newton observing campaign differs from the long-term spin-down rate by more than an order of magnitude, effectively ruling out glitch models for 1E 1207.4-5209. If the long-term spin frequency variations are caused by timing noise, the strength of the timing noise in 1E 1207.4-5209 is much stronger than in other pulsars with similar period derivatives. Therefore, it is highly unlikely that the spin variations are caused by the same physical process that causes timing noise in other isolated pulsars. The most plausible scenario for the observed spin irregularities is the presence of a binary companion to 1E 1207.4-5209. We identified a family of orbital solutions that are consistent with our phase-connected timing solution, archival frequency measurements, and constraints on the companions mass imposed by deep IR and optical observations.Comment: 8 pages, 4 figures. To be published in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface" (April 24-28, 2006) - eds. D. Page, R. Turolla & S. Zan

    Confronting Neutron Star Cooling Theories with New Observations

    Full text link
    With the successful launch of Chandra and XMM/Newton X-ray space missions combined with the lower-energy band observations, we are in the position where careful comparison of neutron star cooling theories with observations will make it possible to distinguish among various competing theories. For instance, the latest theoretical and observational developments already exclude both nucleon and kaon direct URCA cooling. In this way we can now have realistic hope for determining various important properties, such as the composition, degree of superfluidity, the equation of state and steller radius. These developments should help us obtain better insight into the properties of dense matter.Comment: 11 pages, 1 figur

    Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    Full text link
    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nonthermal nebula 40'' in diameter exhibiting a power-law spectrum with photon index Gamma = 1.6+/-0.3, typical of a pulsar wind nebula. The implied spin-down luminosity of the neutron star, assuming a conversion efficiency to nebular flux appropriate to Vela-like pulsars, is ~10^{35} ergs/s, again typical of objects a few tens of kyr old. Morphologically, the nebular flux is slightly enhanced along a direction, in projection on the sky, independently demonstrated to be of significance in radio polarization observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5'' from the point source, a distance consistent with the sizes of resolved wind termination shocks around many Vela-like pulsars. Finally, we argue based on synchrotron lifetimes in the estimated nebular magnetic field that DA 495 represents a rare pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron star's wind, and that this high magnetization factor may account for the nebula's low luminosity.Comment: 26 pages, 5 figures, AASTeX preprint style. Accepted for publication in The Astrophysical Journa

    The Complex Wind Torus and Jets of PSR B1706-44

    Full text link
    We report on Chandra ACIS imaging of the pulsar wind nebula (PWN) of the young Vela-like PSR B1706-44, which shows the now common pattern of an equatorial wind and polar jets. The structure is particularly rich, showing a relativistically boosted termination shock, jets with strong confinement, a surrounding radio/X-ray PWN and evidence for a quasi-static `bubble nebula'. The structures trace the pulsar spin geometry and illuminate its possible relation to SNR G343.1-2.3. We also obtain improved estimates of the pulsar flux and nebular spectrum, constraining the system age and energetics.Comment: To appear in the Astrophysical Journal. 15pp, 4 figures in 7 file

    Powering Anomalous X-ray Pulsars by Neutron Star Cooling

    Get PDF
    Using recently calculated analytic models for the thermal structure of ultramagnetized neutron stars, we estimate the thermal fluxes from young (t∌1000t\sim 1000 yr) ultramagnetized (B∌1015B \sim 10^{15} G) cooling neutron stars. We find that the pulsed X-ray emission from objects such as 1E 1841-045 and 1E 2259+586 as well as many soft-gamma repeaters can be explained by photon cooling if the neutron star possesses a thin insulating envelope of matter of low atomic weight at densities ρ<107−108\rho < 10^{7}-10^{8} g/cm3^3. The total mass of this insulating layer is M∌10−11−10−8M⊙M \sim 10^{-11}-10^{-8} M_\odot.Comment: 8 pages, 1 figure, to appear in Ap.J. Letters (one reference entry corrected, no other changes

    XMM-Newton observations of the neutron star X-ray transient KS 1731-260 in quiescence

    Get PDF
    We report on XMM-Newton observations performed on 2001 September 13-14 of the neutron star X-ray transient KS 1731-260 in quiescence. The source was detected at an unabsorbed 0.5-10 keV flux of only 4 - 8 x 10^{-14} erg/s, depending on the model used to fit the data, which for a distance of 7 kpc implies a 0.5-10 keV X-ray luminosity of approximately 2 - 5 x 10^{32} erg/s. The September 2001 quiescent flux of KS 1731-260 is lower than that observed during the Chandra observation in March 2001. In the cooling neutron star model for the quiescent X-ray emission of neutron star X-ray transients, this decrease in the quiescent flux implies that the crust of the neutron star in KS 1731-260 cooled down rapidly between the two epochs, indicating that the crust has a high conductivity. Furthermore, enhanced cooling in the neutron star core is also favored by our results.Comment: Accepter for publication in ApJ Letters, 22 May 200
    • 

    corecore