21 research outputs found
How does Inflation Depend Upon the Nature of Fluids Filling Up the Universe in Brane World Scenario
By constructing different parameters which are able to give us the
information about our universe during inflation,(specially at the start and the
end of the inflationary universe) a brief idea of brane world inflation is
given in this work. What will be the size of the universe at the end of
inflation,i.e.,how many times will it grow than today's size is been speculated
and analysed thereafter. Different kinds of fluids are taken to be the matter
inside the brane. It is observed that in the case of highly positive pressure
grower gas like polytropic,the size of the universe at the end of inflation is
comparitively smaller. Whereas for negative pressure creators (like chaplygin
gas) this size is much bigger. Except thse two cases, inflation has been
studied for barotropic fluid and linear redshift parametrization too. For them the size of the universe after
inflation is much more high. We also have seen that this size does not depend
upon the potential energy at the end of the inflation. On the contrary, there
is a high impact of the initial potential energy upon the size of inflation.Comment: 20 page
Ozone exposure triggers insulin resistance through muscle c-Jun N-terminal kinase activation
International audienceA growing body of evidence suggests that exposure to traffic-related air pollution is a risk factor for type 2 diabetes. Ozone, a major photochemical pollutant in urban areas, is negatively associated with fasting glucose and insulin levels, but most aspects of this association remain to be elucidated. Using an environmentally realistic concentration (0.8 parts per million), we demonstrated that exposure of rats to ozone induced whole-body insulin resistance and oxidative stress, with associated endoplasmic reticulum (ER) stress, c-Jun N-terminal kinase (JNK) activation, and disruption of insulin signaling in skeletal muscle. Bronchoalveolar lavage fluids from ozone-treated rats reproduced this effect in C2C12 myotubes, suggesting that toxic lung mediators were responsible for the phenotype. Pretreatment with the chemical chaperone 4-phenylbutyric acid, the JNK inhibitor SP600125, or the antioxidant N-acetylcysteine alleviated insulin resistance, demonstrating that ozone sequentially triggered oxidative stress, ER stress, and JNK activation to impair insulin signaling in muscle. This study is the first to report that ozone plays a causative role in the development of insulin resistance, suggesting that it could boost the development of diabetes. We therefore provide a potential mechanism linking pollutant exposure and the increased incidence of metabolic diseases
Cirsimarin, a potent antilipogenic flavonoid, decreases fat deposition in mice intra-abdominal adipose tissue
International audienceOBJECTIVE: We previously reported that the flavonoid cirsimarin exerts in vitro a strong lipolytic activity on isolated adipocytes. This study was therefore designed to evaluate in vivo the effects of cirsimarin on white adipose tissue (WAT) accretion in mice. METHODS: Male CD1 mice were injected daily with either vehicle (intraperitoneal (i.p.)) or cirsimarin (25 or 50 mg kg(-1) per day, i.p.) for 18 days. Mice were killed and fat pads weighted. Epididymal fat pads were used for cellularity measurement. Effects of cirsimarin treatment on lipolysis and lipogenesis in WAT were assessed. RESULTS: Mice treated with 25 or 50 mg kg(-1) per day cirsimarin showed a decrease in retroperitoneal (-29 and -37% respectively, P<0.005) and epididymal (-25 and -28% respectively, P<0.005) fat pad weights compared with controls. This effect was restricted to intra-abdominal WAT as no difference was noticed for subcutaneous inguinal WAT. The decrease in intra-abdominal WAT accretion was due to a decrease in adipose cell diameter (-5 and -8% for 25 and 50 mg kg(-1) per day cirsimarin, respectively) resulting in a 14 and 35% decrease in adipose cell volume while no change was noticed in total adipocyte number. Direct injection of cirsimarin (50 mg kg(-1)) to rats did not trigger lipolysis. In contrast, cirsimarin showed in vivo as well as in vitro a strong antilipogenic activity, which may be the critical aspect of its effects on fat accretion in mice. The inhibitory concentration 50% of cirsimarin on lipogenic activity in isolated adipocytes was found to be 1.280.04 μM. Cirsimarin given orally reduced intra-abdominal fat accretion in mice. CONCLUSION: Cirsimarin exerts potent antilipogenic effect and decreases adipose tissue deposition in mice. Cirsimarin could therefore be a potential candidate for the treatment of obesity