984 research outputs found
Supersonic flow with feeding of energy
The present work discusses the results of some experimental studies on the possibility of attenuating shock waves in a supersonic flow. The shock waves were formed by an external source of electrical energy. An electromechanical method is described that permits partial recovery of the expended energy
Effects of temperature upon the collapse of a Bose-Einstein condensate in a gas with attractive interactions
We present a study of the effects of temperature upon the excitation
frequencies of a Bose-Einstein condensate formed within a dilute gas with a
weak attractive effective interaction between the atoms. We use the
self-consistent Hartree-Fock Bogoliubov treatment within the Popov
approximation and compare our results to previous zero temperature and
Hartree-Fock calculations The metastability of the condensate is monitored by
means of the excitation frequency. As the number of atoms in the
condensate is increased, with held constant, this frequency goes to zero,
signalling a phase transition to a dense collapsed state. The critical number
for collapse is found to decrease as a function of temperature, the rate of
decrease being greater than that obtained in previous Hartree-Fock
calculations.Comment: 4 pages LaTeX, 3 eps figures. To appear as a letter in J. Phys.
Thomas-Fermi-Dirac-von Weizsacker hydrodynamics in laterally modulated electronic systems
We have studied the collective plasma excitations of a two-dimensional
electron gas with an arbitrary lateral charge-density modulation. The dynamics
is formulated using a previously developed hydrodynamic theory based on the
Thomas-Fermi-Dirac-von Weizsacker approximation. In this approach, both the
equilibrium and dynamical properties of the periodically modulated electron gas
are treated in a consistent fashion. We pay particular attention to the
evolution of the collective excitations as the system undergoes the transition
from the ideal two-dimensional limit to the highly-localized one-dimensional
limit. We also calculate the power absorption in the long-wavelength limit to
illustrate the effect of the modulation on the modes probed by far-infrared
(FIR) transmission spectroscopy.Comment: 27 page Revtex file, 15 Postscript figure
Two-fluid dynamics for a Bose-Einstein condensate out of local equilibrium with the non-condensate
We extend our recent work on the two-fluid hydrodynamics of a Bose-condensed
gas by including collisions involving both condensate and non-condensate atoms.
These collisions are essential for establishing a state of local thermodynamic
equilibrium between the condensate and non-condensate. Our theory is more
general than the usual Landau two-fluid theory, to which it reduces in the
appropriate limit, in that it allows one to describe situations in which a
state of complete local equilibrium between the two components has not been
reached. The exchange of atoms between the condensate and non-condensate is
associated with a new relaxational mode of the gas.Comment: 4 pages, revtex, 1 postscript figure, Fig.1 has been correcte
On recombination in strong laser fields: effect of a slow drift
The dynamics of the recombination in ultrastrong atomic fields is studied for
one-dimensional models by numerical simulations. A nonmonotonic behavior of the
bound state final population as a function of the laser field amplitude is
examined. An important role of a slow drift of an electron wave packet is
observed.Comment: 4 pages, 6 figure
Finite-temperature simulations of the scissors mode in Bose-Einstein condensed gases
The dynamics of a trapped Bose-condensed gas at finite temperatures is
described by a generalized Gross-Pitaevskii equation for the condensate order
parameter and a semi-classical kinetic equation for the thermal cloud, solved
using -body simulations. The two components are coupled by mean fields as
well as collisional processes that transfer atoms between the two. We use this
scheme to investigate scissors modes in anisotropic traps as a function of
temperature. Frequency shifts and damping rates of the condensate mode are
extracted, and are found to be in good agreement with recent experiments.Comment: 4 pages, 3 figure
Excitation spectrum in a cylindrical Bose-Einstein gas
Whole excitation spectrum is calculated within the Popov approximation of the
Bogoliubov theory for a cylindrical symmetric Bose-Einstein gas trapped
radially by a harmonic potential. The full dispersion relation and its
temperature dependence of the zero sound mode propagating along the axial
direction are evaluated in a self-consistent manner. The sound velocity is
shown to depend not only on the peak density, but also on the axial area
density. Recent sound velocity experiment on Na atom gas is discussed in light
of the present theory.Comment: 4 pages, 5 eps figure
Landau damping in trapped Bose-condensed gases
We study Landau damping in dilute Bose-Einstein condensed gases in both
spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov
equations for the mode spectrum in both of these cases, and calculate the
damping by summing over transitions between excited quasiparticle states. The
results for the spherical case are compared to those obtained in the
Hartree-Fock approximation, where the excitations take on a single-particle
character, and excellent agreement between the two approaches is found. We have
also taken the semiclassical limit of the Hartree-Fock approximation and obtain
a novel expression for the Landau damping rate involving the time dependent
self-diffusion function of the thermal cloud. As a final approach, we study the
decay of a condensate mode by making use of dynamical simulations in which both
the condensate and thermal cloud are evolved explicitly as a function of time.
A detailed comparison of all these methods over a wide range of sample sizes
and trap geometries is presented.Comment: 18 pages, 13 figures, submitted to the New Journal of Physics focus
issue on Quantum Gase
Finite temperature excitations of a trapped Bose gas
We present a detailed study of the temperature dependence of the condensate
and noncondensate density profiles of a Bose-condensed gas in a parabolic trap.
These quantitites are calculated self-consistently using the
Hartree-Fock-Bogoliubov equations within the Popov approximation. Below the
Bose-Einstein transition the excitation frequencies have a realtively weak
temperature dependence even though the condensate is strongly depleted. As the
condensate density goes to zero through the transition, the excitation
frequencies are strongly affected and approach the frequencies of a
noninteracting gas in the high temperature limit.Comment: 4 pages, Latex, 4 postscript figures. Submitted to Physical Review
Letter
- …