32 research outputs found
Thomas-Fermi-Dirac-von Weizsacker hydrodynamics in laterally modulated electronic systems
We have studied the collective plasma excitations of a two-dimensional
electron gas with an arbitrary lateral charge-density modulation. The dynamics
is formulated using a previously developed hydrodynamic theory based on the
Thomas-Fermi-Dirac-von Weizsacker approximation. In this approach, both the
equilibrium and dynamical properties of the periodically modulated electron gas
are treated in a consistent fashion. We pay particular attention to the
evolution of the collective excitations as the system undergoes the transition
from the ideal two-dimensional limit to the highly-localized one-dimensional
limit. We also calculate the power absorption in the long-wavelength limit to
illustrate the effect of the modulation on the modes probed by far-infrared
(FIR) transmission spectroscopy.Comment: 27 page Revtex file, 15 Postscript figure
Dynamical properties of the unitary Fermi gas: collective modes and shock waves
We discuss the unitary Fermi gas made of dilute and ultracold atoms with an
infinite s-wave inter-atomic scattering length. First we introduce an efficient
Thomas-Fermi-von Weizsacker density functional which describes accurately
various static properties of the unitary Fermi gas trapped by an external
potential. Then, the sound velocity and the collective frequencies of
oscillations in a harmonic trap are derived from extended superfluid
hydrodynamic equations which are the Euler-Lagrange equations of a
Thomas-Fermi-von Weizsacker action functional. Finally, we show that this
amazing Fermi gas supports supersonic and subsonic shock waves.Comment: 9 pages, 3 figures, invited talk at the International Workshop
"Critical Stability 2011" (Erice, October 2011), to be published in the
journal Few Body System
Collective excitations of a trapped boson-fermion mixture across demixing
We calculate the spectrum of low-lying collective excitations in a mesoscopic
cloud formed by a Bose-Einstein condensate and a spin-polarized Fermi gas as a
function of the boson-fermion repulsions. The cloud is under isotropic harmonic
confinement and its dynamics is treated in the collisional regime by using the
equations of generalized hydrodynamics with inclusion of surface effects. For
large numbers of bosons we find that, as the cloud moves towards spatial
separation (demixing) with increasing boson-fermion coupling, the frequencies
of a set of collective modes show a softening followed by a sharp upturn. This
behavior permits a clear identification of the quantum phase transition. We
propose a physical interpretation for the dynamical transition point in a
confined mixture, leading to a simple analytical expression for its location.Comment: revtex4, 9 pages, 8 postscript file