64 research outputs found
Recommended from our members
Phylogenetic analysis of a highly specific association between ectosymbiotic, sulfur-oxidizing bacteria and a marine nematode
The phylogenetic relationship of chemoautotrophic, sulfur-oxidizing, ectosymbiotic bacteria growing on a marine nematode, a Laxus sp. (formerly a Catanema sp.), to known endosymbionts and free-living bacteria was determined. Comparative 16S rRNA sequencing was used to investigate the unculturable nematode epibionts, and rRNA-targeted oligonucleotide hybridization probes were used to identify the ectosymbionts in situ. Both analyses revealed a remarkably specific and stable symbiosis. Unique hybridization of a specific probe to the ectosymbionts indicated that only one species of bacteria was present and growing on the cuticle of the nematode. Distance and parsimony methods used to infer phylogenetic trees both placed the nematode ectosymbionts at the base of a branch containing chemoautotrophic, sulfur-oxidizing endosymbionts of three bivalve families and of the tube worm Riftia pachyptila. The most closely related free-living bacteria were chemoautotrophic sulfur oxidizers belonging to the genus Thiomicrospira. Furthermore, our results suggested that a second, only distantly related group of thioautotrophic endosymbionts has as its deepest branch surface-colonizing bacteria belonging to the genus Thiothrix, some of which are capable of sulfur-oxidizing chemoautotrophic growth.Organismic and Evolutionary Biolog
Missing lithotroph identified as new planctomycete
With the increased use of chemical fertilizers in agriculture, many densely populated countries face environmental problems associated with high ammonia emissions. The process of anaerobic ammonia oxidation ('anammox') is one of the most innovative technological advances in the removal of ammonia nitrogen from waste water. This new process combines ammonia and nitrite directly into dinitrogen gas. Until now, bacteria capable of anaerobically oxidizing ammonia had never been found and were known as "lithotrophs missing from nature". Here we report the discovery of this missing lithotroph and its identification as a new, autotrophic member of the order Planctomycetales, one of the major distinct divisions of the Bacteria. The new planctomycete grows extremely slowly, dividing only once every two weeks. At present, it cannot be cultivated by conventional microbiological techniques. The identification of this bacterium as the one responsible for anaerobic oxidation of ammonia makes an important contribution to the problem of unculturability
Long Distance Free Space Quantum Cryptography
Quantum cryptography bases the security of key exchange on the laws of quantum physics and will become the first application of quantum information methods. Here we present the design of novel hardware components which enabled the demonstration of secure key exchange over a 23.4 km free-space link
- …