361 research outputs found
Teleportation between distant qudits via scattering of mobile qubits
We consider a one-dimensional (1D) structure where non-interacting spin-
scattering centers, such as quantum impurities or multi-level atoms, are
embedded at given positions. We show that the injection into the structure of
unpolarized flying qubits, such as electrons or photons, along with {path}
detection suffice to accomplish spin-state teleportation between two centers
via a third ancillary one. {No action over the internal quantum state of both
the spin- particles and the flying qubits is required. The protocol enables
the transfer of quantum information between well-seperated static entities in
nanostructures by exploiting a very low-control mechanism, namely scattering.Comment: 8 pages, 5 figure
Electron Fabry-Perot interferometer with two entangled magnetic impurities
We consider a one-dimensional (1D) wire along which single conduction
electrons can propagate in the presence of two spin-1/2 magnetic impurities.
The electron may be scattered by each impurity via a contact-exchange
interaction and thus a spin-flip generally occurs at each scattering event.
Adopting a quantum waveguide theory approach, we derive the stationary states
of the system at all orders in the electron-impurity exchange coupling
constant. This allows us to investigate electron transmission for arbitrary
initial states of the two impurity spins. We show that for suitable electron
wave vectors, the triplet and singlet maximally entangled spin states of the
impurities can respectively largely inhibit the electron transport or make the
wire completely transparent for any electron spin state. In the latter case, a
resonance condition can always be found, representing an anomalous behaviour
compared to typical decoherence induced by magnetic impurities. We provide an
explanation for these phenomena in terms of the Hamiltonian symmetries.
Finally, a scheme to generate maximally entangled spin states of the two
impurities via electron scattering is proposed.Comment: 19 page
Effect of Static Disorder in an Electron Fabry-Perot Interferometer with Two Quantum Scattering Centers
In a recent paper -- F. Ciccarello \emph{et al.}, New J. Phys. \textbf{8},
214 (2006) -- we have demonstrated that the electron transmission properties of
a one-dimensional (1D) wire with two identical embedded spin-1/2 impurities can
be significantly affected by entanglement between the spins of the scattering
centers. Such effect is of particular interest in the control of transmission
of quantum information in nanostructures and can be used as a detection scheme
of maximally entangled states of two localized spins. In this letter, we relax
the constraint that the two magnetic impurities are equal and investigate how
the main results presented in the above paper are affected by a static disorder
in the exchange coupling constants of the impurities. Good robustness against
deviation from impurity symmetry is found for both the entanglement dependent
transmission and the maximally entangled states generation scheme.Comment: 4 pages, 5 figure
Physical model for the generation of ideal resources in multipartite quantum networking
We propose a physical model for generating multipartite entangled states of
spin- particles that have important applications in distributed quantum
information processing. Our protocol is based on a process where mobile spins
induce the interaction among remote scattering centers. As such, a major
advantage lies on the management of stationary and well separated spins. Among
the generable states, there is a class of -qubit singlets allowing for
optimal quantum telecloning in a scalable and controllable way. We also show
how to prepare Aharonov, W and Greenberger-Horne-Zeilinger states.Comment: 5 pages, 2 figures. Format revise
Entanglement-induced electron coherence in a mesoscopic ring with two magnetic impurities
We investigate the Aharonov-Bohm (AB) interference pattern in the electron
transmission through a mesoscopic ring in which two identical non-interacting
magnetic impurities are embedded. Adopting a quantum waveguide theory, we
derive the exact transmission probability amplitudes and study the influence of
maximally entangled states of the impurity spins on the electron transmittivity
interference pattern. For suitable electron wave vectors, we show that the
amplitude of AB oscillations in the absence of impurities is in fact not
reduced within a wide range of the electron-impurity coupling constant when the
maximally entangled singlet state is prepared. Such state is thus able to
inhibit the usual electron decoherence due to scattering by magnetic
impurities. We also show how this maximally entangled state of the impurity
spins can be generated via electron scattering.Comment: 8 page
Funnel plots and choropleth maps in cancer risk communication: a comparison of tools for disseminating population-based incidence data to stakeholders
Background: Population-based cancer registries provide epidemiological cancer information, but the indicators are often too complex to be interpreted by local authorities and communities, due to numeracy and literacy limitations. The aim of this paper is to compare the commonly used visual formats to funnel plots to enable local public health authorities and communities to access valid and understandable cancer incidence data obtained at the municipal level. Methods: A funnel plot representation of standardised incidence ratio (SIR) was generated for the 82 municipalities of the Palermo Province with the 2003 2011 data from the Palermo Province Cancer Registry (Sicily, Italy). The properties of the funnel plot and choropleth map methodologies were compared within the context of disseminating epidemiological data to stakeholders. Results: The SIRs of all the municipalities remained within the control limits, except for Palermo city area (SIR=1.12), which was sited outside the upper control limit line of 99.8%. The Palermo Province SIRs funnel plot representation was congruent with the choropleth map generated from the same data, but the former resulted more informative as shown by the comparisons of the weaknesses and strengths of the 2 visual formats. Conclusions: Funnel plot should be used as a complementary valuable tool to communicate epidemiological data of cancer registries to communities and local authorities, visually conveying an efficient and simple way to interpret cancer incidence data
Entanglement Controlled Single-Electron Transmittivity
We consider a system consisting of single electrons moving along a 1D wire in
the presence of two magnetic impurities. Such system shows strong analogies
with a Fabry - Perot interferometer in which the impurities play the role of
two mirrors with a quantum degree of freedom: the spin. We have analysed the
electron transmittivity of the wire in the presence of entanglement between the
impurity spins. The main result of our analysis is that, for suitable values of
the electron momentum, there are two maximally entangled state of the impurity
spins the first of which makes the wire transparent whatever the electron spin
state while the other strongly inhibits the electron transmittivity. Such
predicted striking effect is experimentally observable with present day
technology.Comment: Published version (6 figures
Implementing quantum gates through scattering between a static and a flying qubit
We investigate whether a two-qubit quantum gate can be implemented in a
scattering process involving a flying and a static qubit. To this end, we focus
on a paradigmatic setup made out of a mobile particle and a quantum impurity,
whose respective spin degrees of freedom couple to each other during a
one-dimensional scattering process. Once a condition for the occurrence of
quantum gates is derived in terms of spin-dependent transmission coefficients,
we show that this can be actually fulfilled through the insertion of an
additional narrow potential barrier. An interesting observation is that under
resonance conditions the above enables a gate only for isotropic Heisenberg
(exchange) interactions and fails for an XY interaction. We show the existence
of parameter regimes for which gates able to establish a maximum amount of
entanglement can be implemented. The gates are found to be robust to variations
of the optimal parameters.Comment: 7 pages, 3 figure
- …