34 research outputs found
Spin-resolved electron-impact ionization of lithium
Electron-impact ionization of lithium is studied using the convergent
close-coupling (CCC) method at 25.4 and 54.4 eV. Particular attention is paid
to the spin-dependence of the ionization cross sections. Convergence is found
to be more rapid for the spin asymmetries, which are in good agreement with
experiment, than for the underlying cross sections. Comparison with the recent
measured and DS3C-calculated data of Streun et al (1999) is most intriguing.
Excellent agreement is found with the measured and calculated spin asymmetries,
yet the discrepancy between the CCC and DS3C cross sections is very large
Electron impact excitation cross sections for allowed transitions in atoms
We present a semiempirical Gaunt factor for widely used Van Regemorter
formula [Astrophys. J. 136, 906 (1962)] for the case of allowed transitions in
atoms with the LS coupling scheme. Cross sections calculated using this Gaunt
factor agree with measured cross sections to within the experimental error.Comment: RevTeX, 3 pages, 10 PS figures, 2 PS tables, submitted to Phys. Rev.