41 research outputs found

    Epithelial Development Based on a Branching Morphogenesis Program: The Special Condition of Thymic Epithelium

    Get PDF
    Numerous epithelia undergo tubulogenesis and branching morphogenesis during their development (i.e., lung, salivary gland, pancreas) in order to establish sufficient available surface for their proper functioning. The thymus is a primary lymphoid organ constituted by pharyngeal-derived epithelium necessary to produce immunocompetent lymphocytes whose mechanisms of development are not fully known. In the current chapter, we review histological, cellular, and molecular mechanisms governing early thymic epithelium development emphasizing its resemblance with the process of branching morphogenesis and tubulogenesis occurring in other epithelial organs in which epithelial-mesenchyme interactions determine the tissue patterning through specific combinations of common molecular signaling pathways

    La regulación del Ciclo Celular: Modelos Experimentales sencillos que resultan en Premios Nobel

    Get PDF
    The history of discoveries about the cycle until the contributions made by the 80 winners of the Nobel Prize for Physiology and Medicine 2001, finally focusing on the most current problem.Historia de los descubrimientos acerca del ciclo celular hasta las aportaciones realizadas en los años 80 por los ganadores del Nobel de Medicina y Fisiología 2001, para terminar centrándome en los aspectos más actuales del problema

    T-Cell Development in Early Partially Decapitated Chicken Embryos

    Get PDF
    We have evaluated the immunohistological and cytofluorometric changes that occur in the thymus of chicken embryos partially decapitated at 33-38 hr of incubation (DCx embryos) in an attempt to analyze possible neuroendocrinological influences on T-cell differentiation and, indirectly, the ontogeny of the so-called neuroendocrine-immune network. The thymus of DCx embryos shows important variations that profoundly and selectively affect different T-cell subsets, but not the nonlymphoid cell components of thymic stroma. These modifications include the accumulation of cell precursors, mainly DN (CD4- CD8-) cells and immature CD8high CD4- cells, which expand but do not differentiate, resulting in an extreme decline of both DP (CD4+ CD8+) cells and TcR c-expressing cells. Accordingly, both subcapsulary and outer cortex increase in size, whereas the deep cortex and principally the thymic medulla almost disappear in DCx embryos. In contrast, other T-cell subsets of DCx embryos, largely CDgglowCD4- cells and TcR γδ-expressing cells do not undergo significant variations throughout thymic ontogeny

    In Vitro and In Situ Characterization of Fish Thymic Nurse Cells

    Get PDF
    We present an enzyme- and immuno-cytochemical, and ultrastructural characterization of trout thymic nurse cells (TNCs). Our data suggest that isolated trout thymic multicellular complexes are epithelial cells with acidic compartments that may be involved in the processing of antigens and in the generation of the MHC-II proteins that these cell express, and also that isolated TNCs are the In Vitro equivalent of the pale and intermediate electronlucent epithelial cells located in the inner zone of the trout thymus, constituting indirect evidence of the phylogenetical relationships of the inner zone of the teleost thymus with the thymic cortex of higher vertebrates

    The IL-2/IL-2-Receptor Complex in the Maturation of Rat T-Cell Progenitors

    Get PDF
    On the basis of both the interleukin-2-receptor (IL-2R) α-chain expression on 16-day-old fetal rat thymocytes and the occurrence of interleukin-2 (IL-2) mRNA-containing cells early during rat thymus ontogeny, we have investigated the possible role of IL-2/IL-2R complex in rat T-cell maturation. For this purpose, we analyzed the effects of the addition of either recombinant rat IL- 2 or anti-CD25 (OX-39)-blocking monoclonal antibodies to fetal thymus organ cultures (FTOC), established from 16-day-old rat embryos. IL-2 stimulated the growth of thymocytes and, as a result, induced T-cell differentiation, whereas OX-39 mAb blocked the maturation of thymic-cell progenitors. Accordingly, these results support the involvement of IL-2/IL-2R complex in rat Tcell development

    アトガキ イマ モトメラレル ヨウチエンゾウ キョウドウテキ ナ マナビ ニ ムケテ

    Get PDF
    Background: Human dental mesenchymal stem cells (MSCs) are considered as highly accessible and attractive MSCs for use in regenerative medicine, yet some of their features are not as well characterized as other MSCs. Hypoxia-preconditioning and hypoxia-inducible factor 1 (HIF-1) alpha overexpression significantly improves MSC therapeutics, but the mechanisms involved are not fully understood. In the present study, we characterize immunomodulatory properties of dental MSCs and determine changes in their ability to modulate adaptive and innate immune populations after HIF-1 alpha overexpression. Methods: Human dental MSCs were stably transduced with green fluorescent protein (GFP-MSCs) or GFP-HIF-1 alpha lentivirus vectors (HIF-MSCs). A hypoxic-like metabolic profile was confirmed by mitochondrial and glycolysis stress test. Capacity of HIF-MSCs to modulate T-cell activation, dendritic cell differentiation, monocyte migration, and polarizations towards macrophages and natural killer (NK) cell lytic activity was assessed by a number of functional assays in co-cultures. The expression of relevant factors were determined by polymerase chain reaction (PCR) analysis and enzyme-linked immunosorbent assay (ELISA). Results: While HIF-1 alpha overexpression did not modify the inhibition of T-cell activation by MSCs, HIF-MSCs impaired dendritic cell differentiation more efficiently. In addition, HIF-MSCs showed a tendency to induce higher attraction of monocytes, which differentiate into suppressor macrophages, and exhibited enhanced resistance to NK cell-mediated lysis, which supports the improved therapeutic capacity of HIF-MSCs. HIF-MSCs also displayed a pro-angiogenic profile characterized by increased expression of CXCL12/SDF1 and CCL5/RANTES and complete loss of CXCL10/IP10 transcription. Conclusions: Immunomodulation and expression of trophic factors by dental MSCs make them perfect candidates for cell therapy. Overexpression of HIF-1 alpha enhances these features and increases their resistance to allogenic NK cell lysis and, hence, their potential in vivo lifespan. Our results further support the use of HIF-1 alpha-expressing dental MSCs for cell therapy in tissue injury and immune disorders

    4to. Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad. Memoria académica

    Get PDF
    Este volumen acoge la memoria académica de la Cuarta edición del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad, CITIS 2017, desarrollado entre el 29 de noviembre y el 1 de diciembre de 2017 y organizado por la Universidad Politécnica Salesiana (UPS) en su sede de Guayaquil. El Congreso ofreció un espacio para la presentación, difusión e intercambio de importantes investigaciones nacionales e internacionales ante la comunidad universitaria que se dio cita en el encuentro. El uso de herramientas tecnológicas para la gestión de los trabajos de investigación como la plataforma Open Conference Systems y la web de presentación del Congreso http://citis.blog.ups.edu.ec/, hicieron de CITIS 2017 un verdadero referente entre los congresos que se desarrollaron en el país. La preocupación de nuestra Universidad, de presentar espacios que ayuden a generar nuevos y mejores cambios en la dimensión humana y social de nuestro entorno, hace que se persiga en cada edición del evento la presentación de trabajos con calidad creciente en cuanto a su producción científica. Quienes estuvimos al frente de la organización, dejamos plasmado en estas memorias académicas el intenso y prolífico trabajo de los días de realización del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad al alcance de todos y todas

    Lympho-Hematopoietic Microenvironments and Fish Immune System

    No full text
    In the last 50 years information on the fish immune system has increased importantly, particularly that on species of marked commercial interest (i.e., salmonids, cods, catfish, sea breams), that occupy a key position in the vertebrate phylogenetical tree (i.e., Agnatha, Chondrichtyes, lungfish) or represent consolidated experimental models, such as zebrafish or medaka. However, most obtained information was based on genetic sequence analysis with little or no information on the cellular basis of the immune responses. Although jawed fish contain a thymus and lympho-hematopoietic organs equivalents to mammalian bone marrow, few studies have accounted for the presumptive relationships between the organization of these cell microenvironments and the known immune capabilities of the fish immune system. In the current review, we analyze this topic providing information on: (1) The origins of T and B lymphopoiesis in Agnatha and jawed fish; (2) the remarkable organization of the thymus of teleost fish; (3) the occurrence of numerous, apparently unrelated organs housing lympho-hematopoietic progenitors and, presumably, B lymphopoiesis; (4) the existence of fish immunological memory in the absence of germinal centers
    corecore