41 research outputs found

    Constraints on the Binary Companion to the SN Ic 1994I Progenitor

    Get PDF
    Core-collapse supernovae (SNe), which mark the deaths of massive stars, are among the most powerful explosions in the universe and are responsible, e.g., for a predominant synthesis of chemical elements in their host galaxies. The majority of massive stars are thought to be born in close binary systems. To date, putative binary companions to the progenitors of SNe may have been detected in only two cases, SNe 1993J and 2011dh. We report on the search for a companion of the progenitor of the Type Ic SN 1994I, long considered to have been the result of binary interaction. Twenty years after explosion, we used the Hubble Space Telescope to observe the SN site in the ultraviolet (F275W and F336W bands), resulting in deep upper limits on the expected companion: F275W > 26.1 mag and F336W > 24.7 mag. These allow us to exclude the presence of a main sequence companion with a mass ≳ 10 M_⊙. Through comparison with theoretical simulations of possible progenitor populations, we show that the upper limits to a companion detection exclude interacting binaries with semi-conservative (late Case A or early Case B) mass transfer. These limits tend to favor systems with non-conservative, late Case B mass transfer with intermediate initial orbital periods and mass ratios. The most likely mass range for a putative main sequence companion would be ~5–12 M_⊙, the upper end of which corresponds to the inferred upper detection limit

    Rejuvenated accretors have less bound envelopes: Impact of Roche lobe overflow on subsequent common envelope events

    Full text link
    Common envelope (CE) evolution is an outstanding open problem in stellar evolution, critical to the formation of compact binaries including gravitational-wave (GW) sources. In the "classical" isolated binary evolution scenario for double compact objects, the CE is usually the second mass transfer phase. Thus, the donor star of the CE is the product of a previous binary interaction, often stable Roche-lobe overflow (RLOF). Because of the accretion of mass during the first RLOF, the main-sequence core of the accretor star grows and is "rejuvenated". This modifies the core-envelope boundary region and decreases significantly the envelope binding energy for the remaining evolution. Comparing accretor stars from self-consistent binary models to stars evolved as single, we demonstrate that the rejuvenation can lower the energy required to eject a CE by ∼4−58%\sim 4 - 58\% for both black hole and neutron star progenitors, depending on the evolutionary stage and final orbital separation. Therefore, GW progenitors experiencing a first stable mass transfer may more easily survive subsequent possible CE events and result in possibly wider final separations compared to current predictions. Despite their high mass, our accretors also experience extended "blue loops", which may have observational consequences for low-metallicity stellar populations and asteroseismology.Comment: updated to fix broken link

    Predictions for the hydrogen-free ejecta of pulsational pair-instability supernovae

    Full text link
    Present time-domain astronomy efforts will unveil a variety of rare transients. We focus here on pulsational pair-instability evolution, which can result in signatures observable with electromagnetic and gravitational waves. We simulate grids of bare helium stars to characterize the resulting black hole (BH) masses and ejecta composition, velocity, and thermal state. The stars do not react "elastically" to the thermonuclear explosion: there is not a one-to-one correspondence between pair-instability driven ignition and mass ejections, causing ambiguity in what is an observable pulse. In agreement with previous studies, we find that for carbon-oxygen core masses 28Msun< M_CO<30.5Msun the explosions are not strong enough to affect the surface. With increasing mass, they first cause large radial expansion (30.5Msun<M_CO<31.4Msun), and finally, also mass ejection episodes (M_CO>31.4Msun). The lowest mass to be fully disrupted in a pair-instability supernova is M_CO=57Msun. Models with M_CO>121Msun reach the photodisintegration regime, resulting in BHs with M_BH>125Msun. If the pulsating models produce BHs via (weak) explosions, the previously-ejected material might be hit by the blast wave. We characterize the H-free circumstellar material from the pulsational pair-instability of helium cores assuming simply that the ejecta maintain a constant velocity after ejection. Our models produce He-rich ejecta with mass 10^{-3}Msun<M_CSM<40Msun. These ejecta are typically launched at a few thousand \kms and reach distances of ~10^{12}-10^{15} cm before core-collapse. The delays between mass ejection events and the final collapse span a wide and mass-dependent range (from sub-hour to 10^4 years), and the shells ejected can also collide with each other. The range of properties we find suggests a possible connection with (some) type Ibn supernovae.Comment: accepted versio

    Properties of luminous red supergiant stars in the Magellanic Clouds

    Full text link
    There is evidence that some red supergiants (RSGs) experience short lived phases of extreme mass loss, producing copious amounts of dust. These episodic outburst phases help to strip the hydrogen envelope of evolved massive stars, drastically affecting their evolution. However, to date, the observational data of episodic mass loss is limited. This paper aims to derive surface properties of a spectroscopic sample of fourteen dusty sources in the Magellanic Clouds using the Baade telescope. These properties may be used for future spectral energy distribution fitting studies to measure the mass loss rates from present circumstellar dust expelled from the star through outbursts. We apply MARCS models to obtain the effective temperature (TeffT_{\rm eff}) and extinction (AVA_V) from the optical TiO bands. We use a χ2\chi^2 routine to determine the best fit model to the obtained spectra. We compute the TeffT_{\rm eff} using empirical photometric relations and compare this to our modelled TeffT_{\rm eff}. We have identified a new yellow supergiant and spectroscopically confirmed eight new RSGs and one bright giant in the Magellanic Clouds. Additionally, we observed a supergiant B[e] star and found that the spectral type has changed compared to previous classifications, confirming that the spectral type is variable over decades. For the RSGs, we obtained the surface and global properties, as well as the extinction AVA_V. Our method has picked up eight new, luminous RSGs. Despite selecting dusty RSGs, we find values for AVA_V that are not as high as expected given the circumstellar extinction of these evolved stars. The most remarkable object from the sample, LMC3, is an extremely massive and luminous evolved massive star and may be grouped amongst the largest and most luminous RSGs known in the Large Magellanic Cloud (log(L∗_*/L⊙)∼_{\odot})\sim5.5 and R=1400  R⊙R = 1400 \,\ \textrm R_{\odot}).Comment: Accepted for publication in A&A. 17 pages, 14 figures, 4 table

    The contribution from stars stripped in binaries to cosmic reionization of hydrogen and helium

    Get PDF
    Massive stars are often found in binary systems and it has been argued that binary products boost the ionizing radiation of stellar populations. Accurate predictions for binary products are needed to understand and quantify their contribution to Cosmic Reionization. We investigate the contribution of stars stripped in binaries since (1) they are, arguably, the best-understood products of binary evolution, (2) we recently produced the first non-LTE radiative transfer calculations for the atmospheres of these stripped stars that predict their ionizing spectra, and (3) they are very promising sources since they boost the ionizing emission of stellar populations at late times. This allows stellar feedback to clear the surroundings such that a higher fraction of their photons can escape and ionize the intergalactic medium. Combining our detailed predictions for the ionizing spectra with a simple cosmic reionization model, we estimate that stripped stars contributed tens of percent of the photons that caused cosmic reionization of hydrogen, depending on the assumed escape fractions. More importantly, stripped stars harden the ionizing emission. We estimate that the spectral index for the ionizing part of the spectrum can increase to -1 compared to <-2 for single stars. At high redshift, stripped stars and massive single stars combined dominate the HeII-ionizing emission, but we expect active galactic nuclei drive cosmic helium reionization. Further observational consequences we expect are (1) high ionization states for the intergalactic gas surrounding stellar systems, such as CIV and SiIV and (2) additional heating of the intergalactic medium of up to a few thousand Kelvin. Quantifying these warrants the inclusion of accurate models for stripped stars and other binary products in full cosmological simulations.Comment: Under review in A&A, suggestions welcom
    corecore