7 research outputs found

    Research on Synthesis of New Azo Calix[4]arene and its Dyeing Properties

    No full text
    With the raw materials of calix[4]arene, benzocaine, tricaine and procaine hydrochloride, three new azo calix[4]arene derivatives—6a, 6b and 6c are synthesized by diazotization–coupling reaction of an aromatic amine, with its yield of 83%, 81% and 83% respectively. The structural characterization is in a way of IR, 1H NMR and elemental analysis. This paper investigates the spectral properties of azo calix[4]arene derivatives under different solution pH conditions through the UV–visible spectroscopy, and researches the dyeing properties through the dyeing curve, color yield test and fastness test. The results show that, with the increase of pH value, the azo calix[4]arene derivatives—6a, 6b and 6c form azo–hydrazone tautomeric isomers with the maximum absorption peak redshift; the dyeing effect of the compound is good, of which the dye–uptake rate of the compound 6a is as high as 78%; the surface depth of color yield is 2.798, and the dry and wet rubbing fastness and the soaping fastness are respectively 4, which is a better disperse dye

    Research on Synthesis of New Azo Calix[4]arene and its Dyeing Properties

    No full text
    With the raw materials of calix[4]arene, benzocaine, tricaine and procaine hydrochloride, three new azo calix[4]arene derivatives—6a, 6b and 6c are synthesized by diazotization–coupling reaction of an aromatic amine, with its yield of 83%, 81% and 83% respectively. The structural characterization is in a way of IR, 1H NMR and elemental analysis. This paper investigates the spectral properties of azo calix[4]arene derivatives under different solution pH conditions through the UV–visible spectroscopy, and researches the dyeing properties through the dyeing curve, color yield test and fastness test. The results show that, with the increase of pH value, the azo calix[4]arene derivatives—6a, 6b and 6c form azo–hydrazone tautomeric isomers with the maximum absorption peak redshift; the dyeing effect of the compound is good, of which the dye–uptake rate of the compound 6a is as high as 78%; the surface depth of color yield is 2.798, and the dry and wet rubbing fastness and the soaping fastness are respectively 4, which is a better disperse dye

    A Facile Method to Prepare Superhydrophobic Coatings for Various Substrates

    No full text
    In this study, the superhydrophobic composite coatings for self-cleaning were fabricated by mixing fluorine resin and two kinds of nanoparticles of carbon nanotubes (CNTs) and SiO2. When the mass ratio of CNTs to SiO2 is 2:3 and the added amount of nanoparticles is 75 wt. %, the superhydrophobic composite coatings with a water contact angle of 156.8° show the best self-cleaning property and 3.6° of contact angle hysteresis. Furthermore, the superhydrophobic composite coatings demonstrate good properties such as chemical resistance, thermal stability, and mechanical stability. The superhydrophobic composite coatings could be used for oil/water separation and could be applied to various substrate surfaces such as glass plates, cloth, board, steel plate, PVC plate, and so on. The superhydrophobic composite coatings show practical value in many fields because of their low cost and large area preparation

    A Facile Method to Prepare Superhydrophobic Coatings for Various Substrates

    No full text
    In this study, the superhydrophobic composite coatings for self-cleaning were fabricated by mixing fluorine resin and two kinds of nanoparticles of carbon nanotubes (CNTs) and SiO2. When the mass ratio of CNTs to SiO2 is 2:3 and the added amount of nanoparticles is 75 wt. %, the superhydrophobic composite coatings with a water contact angle of 156.8° show the best self-cleaning property and 3.6° of contact angle hysteresis. Furthermore, the superhydrophobic composite coatings demonstrate good properties such as chemical resistance, thermal stability, and mechanical stability. The superhydrophobic composite coatings could be used for oil/water separation and could be applied to various substrate surfaces such as glass plates, cloth, board, steel plate, PVC plate, and so on. The superhydrophobic composite coatings show practical value in many fields because of their low cost and large area preparation

    Low-Cost Nanocarbon-Based Peroxidases from Graphite and Carbon Fibers

    No full text
    A low-cost and facile preparation of water-soluble carbon nanomaterials from commercial available graphite and polypropylene carbon fibers was achieved. N-doped graphene quantum dot was also prepared as a comparable agent. The resultant carbon nanomaterials were characterized by vital techniques such as transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, Fourier transform infrared (FT-IR) and Raman spectra. The prepared carbon nanomaterials can make hydrogen peroxide degradation produce hydroxyl radicals, thus possess intrinsic peroxidase-like activity for colorimetric and UV-vis absorption detection of hydrogen peroxide. These carbon nanomaterials exhibit excellent sensitivity toward hydrogen peroxide with the limit of detection as low as 0.024 mM (by Carbon nanomaterials-1 from carbon fibers), 0.0042 mM (by Carbon nanomaterials-2 from graphite) and 0.014 mM (by Carbon nanomaterials-3 from nitrogen doped graphene oxide), respectively. The practical use of these carbon nanomaterials for phenolic compounds removal in aqueous solution is also demonstrated successfully. The extraordinary catalytic performance and low cost of these carbon nanomaterials make them a powerful tool for a wide range of potential applications
    corecore