177 research outputs found

    Quantitative estimation of nerve fiber engagement by vagus nerve stimulation using physiological markers

    Get PDF
    © 2020 The Author(s) Background: Cervical vagus nerve stimulation (VNS) is an emerging bioelectronic treatment for brain, metabolic, cardiovascular and immune disorders. Its desired and off-target effects are mediated by different nerve fiber populations and knowledge of their engagement could guide calibration and monitoring of VNS therapies. Objective: Stimulus-evoked compound action potentials (eCAPs) directly provide fiber engagement information but are currently not feasible in humans. A method to estimate fiber engagement through common, noninvasive physiological readouts could be used in place of eCAP measurements. Methods: In anesthetized rats, we recorded eCAPs while registering acute physiological response markers to VNS: cervical electromyography (EMG), changes in heart rate (ΔHR) and breathing interval (ΔBI). Quantitative models were established to capture the relationship between A-, B- and C-fiber type activation and those markers, and to quantitatively estimate fiber activation from physiological markers and stimulation parameters. Results: In bivariate analyses, we found that EMG correlates with A-fiber, ΔHR with B-fiber and ΔBI with C-fiber activation, in agreement with known physiological functions of the vagus. We compiled multivariate models for quantitative estimation of fiber engagement from these markers and stimulation parameters. Finally, we compiled frequency gain models that allow estimation of fiber engagement at a wide range of VNS frequencies. Our models, after calibration in humans, could provide noninvasive estimation of fiber engagement in current and future therapeutic applications of VNS

    Anodal block permits directional vagus nerve stimulation

    Get PDF
    © 2020, The Author(s). Vagus nerve stimulation (VNS) is a bioelectronic therapy for disorders of the brain and peripheral organs, and a tool to study the physiology of autonomic circuits. Selective activation of afferent or efferent vagal fibers can maximize efficacy and minimize off-target effects of VNS. Anodal block (ABL) has been used to achieve directional fiber activation in nerve stimulation. However, evidence for directional VNS with ABL has been scarce and inconsistent, and it is unknown whether ABL permits directional fiber activation with respect to functional effects of VNS. Through a series of vagotomies, we established physiological markers for afferent and efferent fiber activation by VNS: stimulus-elicited change in breathing rate (ΔBR) and heart rate (ΔHR), respectively. Bipolar VNS trains of both polarities elicited mixed ΔHR and ΔBR responses. Cathode cephalad polarity caused an afferent pattern of responses (relatively stronger ΔBR) whereas cathode caudad caused an efferent pattern (stronger ΔHR). Additionally, left VNS elicited a greater afferent and right VNS a greater efferent response. By analyzing stimulus-evoked compound nerve potentials, we confirmed that such polarity differences in functional responses to VNS can be explained by ABL of A- and B-fiber activation. We conclude that ABL is a mechanism that can be leveraged for directional VNS

    Methamphetamine abstinence induces changes in μ-opioid receptor, oxytocin and CRF systems: Association with an anxiogenic phenotype

    Get PDF
    The major challenge in treating methamphetamine addicts is the maintenance of a drug free-state since they experience negative emotional symptoms during abstinence, which may trigger relapse. The neuronal mechanisms underlying long-term withdrawal and relapse are currently not well-understood. There is evidence suggesting a role of the oxytocin (OTR), μ-opioid receptor (MOPr), dopamine D2 receptor (D2R), corticotropin-releasing factor (CRF) systems and the hypothalamic-pituitary-adrenal (HPA)-axis in the different stages of methamphetamine addiction. In this study, we aimed to characterize the behavioral effects of methamphetamine withdrawal in mice and to assess the modulation of the OTR, MOPr, D2R, CRF and HPA-axis following chronic methamphetamine administration and withdrawal. Ten-day methamphetamine administration (2 mg/kg) increased OTR binding in the amygdala, whilst 7 days of withdrawal induced an upregulation of this receptor in the lateral septum. Chronic methamphetamine treatment increased plasma OT levels that returned to control levels following withdrawal. In addition, methamphetamine administration and withdrawal increased striatal MOPr binding, as well as c-Fos+/CRF+ neuronal expression in the amygdala, whereas an increase in plasma corticosterone levels was observed following METH administration, but not withdrawal. No differences were observed in the D2R binding following METH administration and withdrawal. The alterations in the OTR, MOPr and CRF systems occurred concomitantly with the emergence of anxiety-related symptoms and the development of psychomotor sensitization during withdrawal. Collectively, our findings indicate that chronic methamphetamine use and abstinence can induce brain-region specific neuroadaptations of the OTR, MOPr and CRF systems, which may, at least, partly explain the withdrawal-related anxiogenic effects

    Emotional Impairment and Persistent Upregulation of mGlu5 Receptor following Morphine Abstinence: Implications of an mGlu5-MOPr Interaction.

    Get PDF
    BACKGROUND: A difficult problem in treating opioid addicts is the maintenance of a drug-free state because of the negative emotional symptoms associated with withdrawal, which may trigger relapse. Several lines of evidence suggest a role for the metabotropic glutamate receptor 5 in opioid addiction; however, its involvement during opioid withdrawal is not clear. METHODS: Mice were treated with a 7-day escalating-dose morphine administration paradigm. Following withdrawal, the development of affective behaviors was assessed using the 3-chambered box, open-field, elevated plus-maze and forced-swim tests. Metabotropic glutamate receptor 5 autoradiographic binding was performed in mouse brains undergoing chronic morphine treatment and 7 days withdrawal. Moreover, since there is evidence showing direct effects of opioid drugs on the metabotropic glutamate receptor 5 system, the presence of an metabotropic glutamate receptor 5/μ-opioid receptor interaction was assessed by performing metabotropic glutamate receptor 5 autoradiographic binding in brains of mice lacking the μ-opioid receptor gene. RESULTS: Withdrawal from chronic morphine administration induced anxiety-like, depressive-like, and impaired sociability behaviors concomitant with a marked upregulation of metabotropic glutamate receptor 5 binding. Administration of the metabotropic glutamate receptor 5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine, reversed morphine abstinence-induced depressive-like behaviors. A brain region-specific increase in metabotropic glutamate receptor 5 binding was observed in the nucleus accumbens shell, thalamus, hypothalamus, and amygdala of μ-opioid receptor knockout mice compared with controls. CONCLUSIONS: These results suggest an association between metabotropic glutamate receptor 5 alterations and the emergence of opioid withdrawal-related affective behaviors. This study supports metabotropic glutamate receptor 5 system as a target for the development of pharmacotherapies for the treatment of opioid addiction. Moreover, our data show direct effects of μ-opioid receptor system manipulation on metabotropic glutamate receptor 5 binding in the brain

    Modulating functionally-distinct vagus nerve fibers using microelectrodes and kilohertz frequency electrical stimulation

    Full text link
    Modulation of functionally distinct nerve fibers with bioelectronic devices provides a therapeutic opportunity for various diseases. In this study, we began by developing a computational model including four major subtypes of myelinated fibers and one unmyelinated fiber. Second, we used an intrafascicular electrode to perform kHz-frequency electric stimulation to preferentially modulate a population of fibers. Our model suggests that fiber physical properties and electrode-to-fascicle distance severely impacts stimulus-response relationships. Large diameter fibers (Aα-and Aβ-) were only minimally influenced by the fascicle size and electrode location, while smaller diameter fibers (Aδ-, B-and C-) indicated a stronger dependency.Clinical Relevance-Our findings support the possibility of selectively modulating functionally-distinct nerve fibers using electrical stimulation in a small, localized region. Our model provides an effective tool to design next-generation implantable devices and therapeutic stimulation strategies toward minimizing off-target effects

    Author Correction: Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation (Nature Communications, (2019), 10, 1, (952), 10.1038/s41467-019-08750-9)

    Get PDF
    © 2020, The Author(s). This article contained an error in the ordinate axis in Fig. 2d, where the units were reported as nmol/L. The unit should have been reported as pg/ml. This has now been corrected in both the PDF and HTML versions of the Article

    Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters

    Get PDF
    Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect

    Machine learning to assist clinical decision-making during the COVID-19 pandemic.

    Get PDF
    Background:The number of cases from the coronavirus disease 2019 (COVID-19) global pandemic has overwhelmed existing medical facilities and forced clinicians, patients, and families to make pivotal decisions with limited time and information. Main body:While machine learning (ML) methods have been previously used to augment clinical decisions, there is now a demand for Emergency ML. Throughout the patient care pathway, there are opportunities for ML-supported decisions based on collected vitals, laboratory results, medication orders, and comorbidities. With rapidly growing datasets, there also remain important considerations when developing and validating ML models. Conclusion:This perspective highlights the utility of evidence-based prediction tools in a number of clinical settings, and how similar models can be deployed during the COVID-19 pandemic to guide hospital frontlines and healthcare administrators to make informed decisions about patient care and managing hospital volume

    The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms": current progress, challenges, and charting the future.

    Get PDF
    There is a broad and growing interest in Bioelectronic Medicine, a dynamic field that continues to generate new approaches in disease treatment. The fourth bioelectronic medicine summit "Technology targeting molecular mechanisms" took place on September 23 and 24, 2020. This virtual meeting was hosted by the Feinstein Institutes for Medical Research, Northwell Health. The summit called international attention to Bioelectronic Medicine as a platform for new developments in science, technology, and healthcare. The meeting was an arena for exchanging new ideas and seeding potential collaborations involving teams in academia and industry. The summit provided a forum for leaders in the field to discuss current progress, challenges, and future developments in Bioelectronic Medicine. The main topics discussed at the summit are outlined here
    • …
    corecore