283 research outputs found
The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days of muscle unloading
In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (P<0·001) and soleus fibre size was reduced by 8·5 ± 13% (P = 0·016). However, WoRPD remained unaffected as indicated by an unchanged loss of relative plantar flexor power between pre- and postexperiments (P = 0·88). Blood flow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability
Native myocardial T1 time can predict development of subsequent anthracycline-induced cardiomyopathy
Aims: This study aims to assess subclinical changes in functional and morphological myocardial magnetic resonance parameters very early into an anthracycline treatment, which may predict subsequent development of anthracycline-induced cardiomyopathy (aCMP). Methods and results: Thirty sarcoma patients with planned anthracycline-based chemotherapy (360-400 mg/m doxorubicin-equivalent) were recruited. Median treatment time was 19.1 ± 2.1 weeks. Enrolled individuals received three cardiovascular magnetic resonance studies (before treatment, 48 h after first anthracycline treatment, and upon completion of treatment). Native T1 mapping (modified Look-Locker inversion recovery 5s(3s)3s), T2 mapping, and extracellular volume maps were acquired in addition to a conventional cardiovascular magnetic resonance with steady-state free precession cine imaging at 1.5 T. Patients were given 0.2 mmol/kg gadoteridol for extracellular volume quantification and late gadolinium enhancement imaging. Development of relevant aCMP was defined as drop of left ventricular ejection fraction (LVEF) by >10%. For analysis, 23 complete data sets were available. Nine patients developed aCMP with LVEF reduction >10% until end of chemotherapy. Baseline LVEF was not different between patients with and without subsequent aCMP. When assessed 48 h after first dose of antracyclines, patients with subsequent aCMP had significantly lower native myocardial T1 times compared with before therapy (1002.0 ± 37.9 vs. 956.5 ± 29.2 ms, P 0.05). Patients with aCMP had decreased left ventricular mass upon completion of therapy (86.9 ± 24.5 vs. 81.1 ± 22.3 g; P = 0.02), while patients without aCMP did not show a change in left ventricular mass (81.8 ± 21.0 vs. 79.2 ± 18.1 g; P > 0.05). No patient developed new myocardial scars or compact myocardial fibrosis under chemotherapy. Conclusions: Early decrease of T1 times 48 h after first treatment with anthracyclines can predict the development of subsequent aCMP after completion of chemotherapy
Z-score mapping for standardized analysis and reporting of cardiovascular magnetic resonance modified Look-Locker inversion recovery (MOLLI) T1 data: normal behavior and validation in patients with amyloidosis
BACKGROUND: T1 mapping using modified Look-Locker inversion recovery (MOLLI) provides quantitative information on myocardial tissue composition. T1 results differ between sites due to variations in hardware and software equipment, limiting the comparability of results. The aim was to test if Z-scores can be used to compare the results of MOLLI T1 mapping from different cardiovascular magnetic resonance (CMR) platforms. METHODS: First, healthy subjects (n = 15) underwent 11 combinations of native short-axis T1 mapping (four CMR systems from two manufacturers at 1.5 T and 3 T, three MOLLI schemes). Mean and standard deviation (SD) of septal myocardial T1 were derived for each combination. T1 maps were transformed into Z-score maps based on mean and SD values using a prototype post-processing module. Second, Z-score mapping was applied to a validation sample of patients with cardiac amyloidosis at 1.5 T (n = 25) or 3 T (n = 13). RESULTS: In conventional T1 analysis, results were confounded by variations in field strength, MOLLI scheme, and manufacturer-specific system characteristics. Z-score-based analysis yielded consistent results without significant differences between any two of the combinations in part 1 of the study. In the validation sample, Z-score mapping differentiated between patients with cardiac amyloidosis and healthy subjects with the same diagnostic accuracy as standard T1 analysis regardless of field strength. CONCLUSIONS: T1 analysis based on Z-score mapping provides consistent results without significant differences due to field strengths, CMR systems, or MOLLI variants, and detects cardiac amyloidosis with the same diagnostic accuracy as conventional T1 analysis. Z-score mapping provides a means to compare native T1 results acquired with MOLLI across different CMR platforms
Early myocardial oedema can predict subsequent cardiomyopathy in high-dose anthracycline therapy
AIMS: This study aims to assess subclinical changes in functional and morphologic myocardial MR parameters very early into a repetitive high-dose anthracycline treatment (planned cumulative dose >650 mg/m(2)), which may predict subsequent development of anthracycline-induced cardiomyopathy (aCMP). METHODS: Thirty sarcoma patients with previous exposition of 300-360 mg/m(2) doxorubicin-equivalent chemotherapy who were planned for a second treatment of anthracycline-based chemotherapy (360 mg/m(2) doxorubicin-equivalent) were recruited. Enrolled individuals received three CMR studies (before treatment, 48 h after first anthracycline treatment and upon completion of treatment). Native T1 mapping (MOLLI 5s(3s)3s), T2 mapping, and extracellular volume (ECV) maps were acquired in addition to a conventional CMR with SSFP-cine imaging at 1.5 T. Patients were given 0.2 mmol/kg gadoteridol for ECV quantification and LGE imaging. Blood samples for cardiac biomarkers were obtained before each scan. Development of relevant aCMP was defined as drop of left ventricular ejection fraction (LVEF) by >10% compared with baseline. RESULTS: Twenty-three complete datasets were available for analysis. Median treatment time was 20.7 ± 3.0 weeks. Eight patients developed aCMP with LVEF reduction >10% until end of chemotherapy. Baseline LVEF was not different between patients with and without subsequent aCMP. Patients with aCMP had decreased LV mass upon completion of therapy (99.4 ± 26.5 g vs. 90.3 ± 24.8 g; P = 0.02), whereas patients without aCMP did not show a change in LV mass (91.5 ± 20.0 g vs. 89.0 ± 23.6 g; P > 0.05). On strain analysis, GLS (-15.3 ± 1.3 vs. -13.4 ± 1.6; P = 0.02) and GCS (-16.7 ± 2.1 vs. -14.9 ± 2.6; P = 0.04) were decreased in aCMP patients upon completion of therapy, whereas non-aCMP individuals showed no change in GLS (-15.4 ± 3.3 vs. -15.4 ± 3.4; P = 0.97). When assessed 48 h after first dose of anthracyclines, patients with subsequent aCMP had significantly elevated myocardial T2 times compared with before therapy (53.0 ± 2.8 ms vs. 49.3 ± 5.2 ms, P = 0.02) than patients who did not develop aCMP (50.7 ± 5.1 ms vs. 51.1 ± 3.9 ms, P > 0.05). Native T1 times decreased at 48 h after first dose irrespective of development of subsequent aCMP (1020.2 ± 28.4 ms vs. 973.5 ± 40.3 ms). Upon completion of therapy, patients with aCMP had increased native T1 compared with baseline (1050.8 ± 17.9 ms vs. 1022.4 ± 22.0 ms; P = 0.01), whereas non-aCMP patients did not (1034.5 ± 46.6 ms vs. 1018.4 ± 29.7 ms; P = 0.15). No patient developed new myocardial scars or compact myocardial fibrosis under chemotherapy. Cardiac biomarkers were elevated independent of development of aCMP. CONCLUSIONS: With high cumulative anthracycline doses, early increase of T2 times 48 h after first treatment with anthracyclines can predict the development of subsequent aCMP after completion of chemotherapy. Early drop of native T1 times occurs irrespective of development of aCMP in high-dose anthracycline therapy
Fast acquisition of left and right ventricular function parameters applying cardiovascular magnetic resonance in clinical routine - validation of a 2-shot compressed sensing cine sequence
OBJECTIVES: To evaluate if cine sequences accelerated by compressed sensing (CS) are feasible in clinical routine and yield equivalent cardiac morphology in less time. DESIGN: We evaluated 155 consecutive patients with various cardiac diseases scanned during our clinical routine. LV and RV short axis (SAX) cine images were acquired by conventional and prototype 2-shot CS sequences on a 1.5 T CMR. The 2-shot prototype captures the entire heart over a period of 3 beats making the acquisition potentially even faster. Both scans were performed with identical slice parameters and positions. We compared LV and RV morphology with Bland-Altmann plots and weighted the results in relation to pre-defined tolerance intervals. Subjective and objective image quality was evaluated using a 4-point score and adapted standardized criteria. Scan times were evaluated for each sequence. RESULTS: In total, no acquisitions were lost due to non-diagnostic image quality in the subjective image score. Objective image quality analysis showed no statistically significant differences. The scan time of the CS cines was significantly shorter (p < .001) with mean scan times of 178 ± 36 s compared to 313 ± 65 s for the conventional cine. All cardiac function parameters showed excellent correlation (r 0.978-0.996). Both sequences were considered equivalent for the assessment of LV and RV morphology. CONCLUSIONS: The 2-shot CS SAX cines can be used in clinical routine to acquire cardiac morphology in less time compared to the conventional method, with no total loss of acquisitions due to nondiagnostic quality. Trial registration: ISRCTN12344380. Registered 20 November 2020, retrospectively registered
Quantitative assessment of the lumbar intervertebral disc via T2 shows excellent long-term reliability
Methodologies for the quantitative assessment of the spine tissues, in particular the intervertebral disc (IVD), have not been well established in terms of long-term reliability. This is required for designing prospective studies. 1H water T2 in the IVD (“T2”) has attained wider use in assessment of the lumbar intervertebral discs via magnetic resonance imaging. The reliability of IVD T2 measurements are yet to be established. IVD T2 was assessed nine times at regular intervals over 368 days on six anatomical slices centred at the lumbar spine using a spin-echo multi-echo sequence in 12 men. To assess repeatability, intra-class correlation co-efficients (ICCs), standard error of the measurement, minimal detectable difference and co-efficients of variation (CVs) were calculated along with their 95% confidence intervals. Bland-Altman analysis was also performed. ICCs were above 0.93, with the exception of nuclear T2 at L5/S1, where the ICC was 0.88. CVs of the central-slice nucleus sub-region ranged from 4.3% (average of all levels) to 10.1% for L5/S1 and between 2.2%
to 3.2% for whole IVD T2 (1.8% for the average of all levels). Averaging between vertebral levels improved reliability. Reliability of measurements was least at L5/S1. ICCs of degenerated IVDs were lower. Test-retest reliability was excellent for whole IVD and good to excellent for IVD subregions. The findings help to establish the long-term repeatability of lumbar IVD T2 for the implementation of prospective studies and determination of significant changes within individuals
Translating principles of quality control to cardiovascular magnetic resonance: assessing quantitative parameters of the left ventricle in a large cohort
Cardiac magnetic resonance (CMR) examinations require standardization to achieve reproducible results. Therefore, quality control as known as in other industries such as in-vitro diagnostics, could be of essential value. One such method is the statistical detection of long-time drifts of clinically relevant measurements. Starting in 2010, reports from all CMR examinations of a high-volume center were stored in a hospital information system. Quantitative parameters of the left ventricle were analyzed over time with moving averages of different window sizes. Influencing factors on the acquisition and on the downstream analysis were captured. 26,902 patient examinations were exported from the clinical information system. The moving median was compared to predefined tolerance ranges, which revealed an overall of 50 potential quality relevant changes ("alerts") in SV, EDV and LVM. Potential causes such as change of staff, scanner relocation and software changes were found not to be causal of the alerts. No other influencing factors were identified retrospectively. Statistical quality assurance systems based on moving average control charts may provide an important step towards reliability of quantitative CMR. A prospective evaluation is needed for the effective root cause analysis of quality relevant alerts
Expression of calcification‐related ion transporters during blue mussel larval development
The physiological processes driving the rapid rates of calcification in larval bivalves are poorly understood. Here, we use a calcification substrate‐limited approach (low
dissolved inorganic carbon, CT) and mRNA sequencing to identify proteins involved in bicarbonate acquisition during shell formation. As a secondary approach, we examined
expression of ion transport and shell matrix proteins (SMPs) over the course of larval development and shell formation. We reared four families of Mytilus edulis under ambient (ca. 1865 μmol/kg) and low CT (ca. 941 μmol/kg) conditions and compared expression patterns at six developmental time points. Larvae reared under low CT exhibited a developmental delay, and a small subset of contigs was differentially
regulated between ambient and low CT conditions. Of particular note was the identification of one contig encoding an anion transporter (SLC26) which was strongly
upregulated (2.3–2.9 fold) under low CT conditions. By analyzing gene expression profiles over the course of larval development, we are able to isolate sequences encoding
ion transport and SMPs to enhance our understanding of cellular pathways underlying larval calcification processes. In particular, we observe the differential expression
of contigs encoding SLC4 family members (sodium bicarbonate cotransporters, anion exchangers), calcium‐transporting ATPases, sodium/calcium exchangers, and SMPs such as nacrein, tyrosinase, and transcripts related to chitin production. With a range of candidate genes, this work identifies ion transport pathways in bivalve
larvae and by applying comparative genomics to investigate temporal expression patterns, provides a foundation for further studies to functionally characterize the proteins involved in larval calcification
Burkholderia pseudomallei multi-centre study to establish EUCAST MIC and zone diameter distributions and epidemiological cut-off values.
OBJECTIVES: Melioidosis, caused by Burkholderia pseudomallei, requires intensive antimicrobial treatment. However, standardized antimicrobial susceptibility testing (AST) methodology based on modern principles for determining breakpoints and ascertaining performance of methods are lacking for B. pseudomallei. This study aimed to establish MIC and zone diameter distributions on which to set epidemiological cut-off (ECOFF) values for B. pseudomallei using standard EUCAST methodology for non-fastidious organisms. METHODS: Non-consecutive, non-duplicate clinical B. pseudomallei isolates (9-70 per centre) were tested at eight study centres against eight antimicrobials by broth microdilution (BMD) and the EUCAST disc diffusion method. Isolates without and with suspected resistance mechanisms were deliberately selected. The EUCAST Development Laboratory ensured the quality of study materials, and provided guidance on performance of the tests and interpretation of results. Aggregated results were analysed according to EUCAST recommendations to determine ECOFFs. RESULTS: MIC and zone diameter distributions were generated using BMD and disc diffusion results obtained for 361 B. pseudomallei isolates. MIC and zone diameter ECOFFs (mg/L; mm) were determined for amoxicillin-clavulanic acid (8; 22), ceftazidime (8; 22), imipenem (2; 29), meropenem (2; 26), doxycycline (2; none), tetracycline (8; 23), chloramphenicol (8; 22) and trimethoprim-sulfamethoxazole (4; 28). CONCLUSIONS: We have validated the use of standard BMD and disc diffusion methodology for AST of B. pseudomallei. The MIC and zone diameter distributions generated in this study allowed us to establish MIC and zone diameter ECOFFs for the antimicrobials studied. These ECOFFs served as background data for EUCAST to set clinical MIC and zone diameter breakpoints for B. pseudomallei
- …