3 research outputs found
Endocanalicular transendothelial crossing (ETC): A novel intravasation mode used by HEK-EBNA293-VEGF-D cells during the metastatic process in a xenograft model
In cancer metastasis, intravasation of the invasive tumor cell (TCi) represents one of the most relevant events. During the last years, models regarding cancer cell intravasation have been proposed, such as the "endocanalicular transendothelial crossing" (ETC) theory. This theory describes the interplay between two adjacent endothelial cells and the TCi or a leukocyte during intravasation. Two endothelial cells create a channel with their cell membranes, in which the cell fits in without involving endothelial cell intercellular junctions, reaching the lumen through a transendothelial passage. In the present study, ten SCID mice were subcutaneously xenotransplanted with the HEK-EBNA293-VEGF-D cell line and euthanized after 35 days. Post-mortem examinations were performed and proper specimens from tumors were collected. Routine histology and immunohistochemistry for Ki-67, pAKT, pERK, ZEB-1, TWIST-1, F-actin, E-cadherin and LYVE-1 were performed followed by ultrastructural serial sections analysis. A novel experimental approach involving Computed Tomography (CT) combined with 3D digital model reconstruction was employed. The analysis of activated transcription factors supports that tumor cells at the periphery potentially underwent an epithelial-to-mesenchymal transition (EMT)-like process. Topographical analysis of LYVE-1 immunolabeled lymphatics revealed a peritumoral localisation. TEM investigations of the lymphatic vessels combined with 3D digital modelling enhanced the understanding of the endotheliocytes behavior during TCi intravasation, clarifying the ETC theory. Serial ultrastructural analysis performed within tumor periphery revealed numerous cells during the ETC process. Furthermore, this study demonstrates that ETC is an intravasation mode more frequently used by the TCi than by leukocytes during intravasation in the HEK-EBNA293-VEGF-D xenograft model and lays down the potential basis for promising future studies regarding intravasation blocking therapy
3D printed pre-operative surgical planning model in cat
Introduction/purpose
3D models own patient-specific anatomy could be a powerful referral for surgical planning, enabling a more prepared surgical theatre. The aim of the study was to report a case of 3D pre-operative surgical planning model in a cat with temporomandibular joint (TMJ) ankylosis.
Methods
A three-years old castrated male domestic shorthair cat with a diagnosis of right TMJ ankylosis was submitted for a computed tomographic (CT) scan of the head to build a 3D model for pre-operative planning. A 16-slice multidetector CT scanner was used (Slice Thickness 0.75mm; Kw 130; mAs 45; Pitch 0.8). A segmentation was performed through 3DSlicer, and an STL file of skull and mandibular bone was generated. Mesh models were elaborated in order to be feasible for slicing and printing. The skull and the mandible were printed on their own through a double extrusion 3D Printer, with Poly-Lactic Acid.
Results
CT revealed a rounded right condylar process, with irregular and reduced TMJ space. Right condylectomy through piezoelectric surgery was performed. 3D model was used prior the surgery to easy identify the ideal angulation for condylectomy and during the surgery to verify the proper extent of the osteotomy. At 6-months follow-up the range of mouth opening is close to normal.
Discussion/conclusion
This is the first reported 3D printed pre-operative surgical planning model for condylectomy in a cat with TMJ ankylosis. The pre-operative surgical simulation through 3D printed model enabled to appreciate the uncommon bone anatomy and to facilitate surgery
Endocanalicular transendothelial crossing (ETC): A novel intravasation mode used by HEK-EBNA293-VEGF-D cells during the metastatic process in a xenograft model.
In cancer metastasis, intravasation of the invasive tumor cell (TCi) represents one of the most relevant events. During the last years, models regarding cancer cell intravasation have been proposed, such as the "endocanalicular transendothelial crossing" (ETC) theory. This theory describes the interplay between two adjacent endothelial cells and the TCi or a leukocyte during intravasation. Two endothelial cells create a channel with their cell membranes, in which the cell fits in without involving endothelial cell intercellular junctions, reaching the lumen through a transendothelial passage. In the present study, ten SCID mice were subcutaneously xenotransplanted with the HEK-EBNA293-VEGF-D cell line and euthanized after 35 days. Post-mortem examinations were performed and proper specimens from tumors were collected. Routine histology and immunohistochemistry for Ki-67, pAKT, pERK, ZEB-1, TWIST-1, F-actin, E-cadherin and LYVE-1 were performed followed by ultrastructural serial sections analysis. A novel experimental approach involving Computed Tomography (CT) combined with 3D digital model reconstruction was employed. The analysis of activated transcription factors supports that tumor cells at the periphery potentially underwent an epithelial-to-mesenchymal transition (EMT)-like process. Topographical analysis of LYVE-1 immunolabeled lymphatics revealed a peritumoral localisation. TEM investigations of the lymphatic vessels combined with 3D digital modelling enhanced the understanding of the endotheliocytes behavior during TCi intravasation, clarifying the ETC theory. Serial ultrastructural analysis performed within tumor periphery revealed numerous cells during the ETC process. Furthermore, this study demonstrates that ETC is an intravasation mode more frequently used by the TCi than by leukocytes during intravasation in the HEK-EBNA293-VEGF-D xenograft model and lays down the potential basis for promising future studies regarding intravasation blocking therapy