235 research outputs found
Dependences of the Casimir-Polder interaction between an atom and a cavity wall on atomic and material properties
The Casimir-Polder and van der Waals interactions between an atom and a flat
cavity wall are investigated under the influence of real conditions including
the dynamic polarizability of the atom, actual conductivity of the wall
material and nonzero temperature of the wall. The cases of different atoms near
metal and dielectric walls are considered. It is shown that to obtain accurate
results for the atom-wall interaction at short separations, one should use the
complete tabulated optical data for the complex refractive index of the wall
material and the accurate dynamic polarizability of an atom. At relatively
large separations in the case of a metal wall, one may use the plasma model
dielectric function to describe the dielectric properties of wall material. The
obtained results are important for the theoretical interpretation of
experiments on quantum reflection and Bose-Einstein condensation.Comment: 5 pages, 1 figure, iopart.cls is used, to appear in J. Phys. A
(special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005
Global stability of stationary patterns in bistable reaction-diffusion systems
We study a piecewise linear version of a one-component, one-dimensional reaction-diffusion bistable model, with the aim of analyzing the effect of boundary conditions on the formation and stability of stationary patterns. The analysis proceeds through the study of the behavior of the Lyapunov functional in terms of a control parameter: the reflectivity at the boundary. We show that, in this example, this functional has a very simple and direct geometrical interpretation. © 1995 The American Physical Society
The Neurological Ecology of Fear: Insights Neuroscientists and Ecologists Have to Offer one Another
That the fear and stress of life-threatening experiences can leave an indelible trace on the brain is most clearly exemplified by post-traumatic stress disorder (PTSD). Many researchers studying the animal model of PTSD have adopted utilizing exposure to a predator as a life-threatening psychological stressor, to emulate the experience in humans, and the resulting body of literature has demonstrated numerous long-lasting neurological effects paralleling those in PTSD patients. Even though much more extreme, predator-induced fear and stress in animals in the wild was, until the 1990s, not thought to have any lasting effects, whereas recent experiments have demonstrated that the effects on free-living animals are sufficiently long-lasting to even affect reproduction, though the lasting neurological effects remain unexplored. We suggest neuroscientists and ecologists both have much to gain from collaborating in studying the neurological effects of predator-induced fear and stress in animals in the wild. We outline the approaches taken in the lab that appear most readily translatable to the field, and detail the advantages that studying animals in the wild can offer researchers investigating the “predator model of PTSD.
Advanced Photodetectors for Hyperspectroscopy and Other Applications
Hyperspectroscopy is a new method of surface image taking, providing
simultaneously high position and spectral resolutions which allow one to make
some conclusions about chemical compositions of the surfaces. We are now
studying applications of the hyperspctroscopic technique to be used for
medicine. This may allow one to develop early diagnostics of some illnesses, as
for example, skin cancer. For image taking advanced MCPs are currently used,
sensitive in the spectral interval of 450-850 nm. One of the aims of this work
is to extend the hyperspectrocpic method to the UV region of spectra: 185-280
nm. For this we have developed and successfully tested innovative 1D and 2D UV
sealed photosensitive gaseous detectors with resistive electrodes. These
detectors are superior MCPs due to the very low rate of noise pulses and thus
due to the high signal to noise ratio. Other important features of these
detectors are that they have excellent position resolutions - 30 micron in
digital form, are vibration stable and are spark protected. The first results
from the application of these detectors for spectroscopy, hyperspectroscopy and
the flame detection are presented.Comment: Presented at the IEEE Nuclear Science Syposium, Puerto Rico, October
200
Lateral projection as a possible explanation of the nontrivial boundary dependence of the Casimir force
We find the lateral projection of the Casimir force for a configuration of a
sphere above a corrugated plate. This force tends to change the sphere position
in the direction of a nearest corrugation maximum. The probability distribution
describing different positions of a sphere above a corrugated plate is
suggested which is fitted well with experimental data demonstrating the
nontrivial boundary dependence of the Casimir force.Comment: 5 pages, 1 figur
Interface Motion and Pinning in Small World Networks
We show that the nonequilibrium dynamics of systems with many interacting
elements located on a small-world network can be much slower than on regular
networks. As an example, we study the phase ordering dynamics of the Ising
model on a Watts-Strogatz network, after a quench in the ferromagnetic phase at
zero temperature. In one and two dimensions, small-world features produce
dynamically frozen configurations, disordered at large length scales, analogous
of random field models. This picture differs from the common knowledge
(supported by equilibrium results) that ferromagnetic short-cuts connections
favor order and uniformity. We briefly discuss some implications of these
results regarding the dynamics of social changes.Comment: 4 pages, 5 figures with minor corrections. To appear in Phys. Rev.
Delay-induced Synchronization Phenomena in an Array of Globally Coupled Logistic Maps
We study the synchronization of a linear array of globally coupled identical
logistic maps. We consider a time-delayed coupling that takes into account the
finite velocity of propagation of the interactions. We find globally
synchronized states in which the elements of the array evolve along a periodic
orbit of the uncoupled map, while the spatial correlation along the array is
such that an individual map sees all other maps in his present, current, state.
For values of the nonlinear parameter such that the uncoupled maps are chaotic,
time-delayed mutual coupling suppress the chaotic behavior by stabilizing a
periodic orbit which is unstable for the uncoupled maps. The stability analysis
of the synchronized state allows us to calculate the range of the coupling
strength in which global synchronization can be obtained.Comment: 8 pages, 7 figures, changed content, added reference
Condensation in Globally Coupled Populations of Chaotic Dynamical Systems
The condensation transition, leading to complete mutual synchronization in
large populations of globally coupled chaotic Roessler oscillators, is
investigated. Statistical properties of this transition and the cluster
structure of partially condensed states are analyzed.Comment: 11 pages, 4 figures, revte
- …