409 research outputs found

    Substrate-induced pairing of Si ad-dimers on the Si(100)surface

    Get PDF
    The interaction between Si ad-dimers on the Si(100) surface has been studied by total-energy calculations with a three-particle Stillinger-Weber potential. We have found a strong attractive interaction between neighboring Si ad-dimers located in neighboring on-top and deep-channel positions in adjacent substrate dimer rows. This should result in a four-atomic block consisting of two dimers as an important elementary object of the Si(100) kinetics

    Local probing of coupled interfaces between two-dimensional electron and hole gases in oxide heterostructures by variable-temperature scanning tunneling spectroscopy

    Get PDF
    The electronic structure of an epitaxial oxide heterostructure containing two spatially separated two-dimensional conducting sheets, one electronlike (2DEG) and the other holelike (2DHG), has been investigated using variable temperature scanning tunneling spectroscopy. Heterostructures of LaAlO3/SrTiO3 bilayers on (001)-oriented SrTiO3 (STO) substrates provide the unique possibility to study the coupling between subnanometer spaced conducting interfaces. The band gap increases dramatically at low temperatures due to a blocking of the transition from the conduction band of the STO substrate to the top of the valence band of the STO capping layer. This prevents the replenishment of the depleted electrons in the capping layer from the underlying 2DEG and enables charging of the 2DHG by applying a negative sample bias voltage within the band gap region. At low temperatures the 2DHG can be probed separately with the proposed experimental geometry, although the 2DEG is located less than 1 nm belo

    Strain-induced shape transition of VSi<sub>2</sub> clusters on Si(111)

    Get PDF
    We investigated the growth and shape of vanadium silicide clusters on Si(111) using scanning tunneling microscopy, atomic force microscopy and scanning electron microscopy. The deposition of 8 monolayers of vanadium on Si(111) and subsequent annealing at 1200 K leads to the formation of large elongated VSi2 clusters. This is in marked contrast to the deposition of submonolayer amounts of V where the VSi2 islands have a compact shape. The shape transition can be explained by a competition between edge formation and strain relaxation energy terms. The VSi2 clusters, which are aligned along the three high symmetry directions of the Si(111) surface and surrounded by a denuded zone, form a two-dimensional network.</p

    In-situ spectroscopy of intrinsic Bi2Te3 topological insulator thin films and impact of extrinsic defects

    Get PDF
    Combined in-situ x-ray photoemission spectroscopy, scanning tunnelling spectroscopy and angle resolved photoemission spectroscopy of molecular beam epitaxy grown Bi2Te3 on lattice mismatched substrates reveal high quality stoichiometric thin films with topological surface states without a contribution from the bulk bands at the Fermi energy. The absence of bulk states at the Fermi energy is achieved without counter doping. We observe that the surface morphology and electronic band structure of Bi2Te3 are not affected by in-vacuo storage and exposure to oxygen, whereas major changes are observed when exposed to ambient conditions. These films help define a pathway towards intrinsic topological devices.Comment: 8 pages, 5 figure

    Molecular dynamics and energy landscape of decanethiolates in self-assembled monolayers on Au(111) studied by scanning tunneling microscopy

    Get PDF
    The energetics and dynamics of the various phases of decanethiolate self-assembled monolayers on Au(111) surfaces were studied with scanning tunneling microscopy. We have observed five different phases of the decanethiolate monolayer on Au(111): four ordered phases (β, δ, χ*, and φ) and one disordered phase (ε). We have determined the boundary free energies between the disordered and order phases by analyzing the thermally induced meandering of the domain boundaries. On the basis of these results, we are able to accurately predict the two-dimensional phase diagram of the decanethiolate/Au(111) system. The order-disorder phase transition of the χ* phase occurs at 295 K, followed by the order-disorder phase transition of the β phase at 325 K. Above temperatures of 325 K, only the densely packed φ and disordered ε phases remain. Our findings are in good agreement with the phase diagram of the decanethiolate/Au(111) system that was put forward by Poirier et al. [ Langmuir 2001, 17 (4), 1176-1183 ]

    Two-stage model-based design of cancer phase I dose escalation trials: evaluation using the phase I program of barasertib (AZD1152)

    Get PDF
    Introduction Modeling and simulation of pharmacokinetics and pharmacodynamics has previously been shown to be potentially useful in designing Phase I programs of novel anti-cancer agents that show hematological toxicity. In this analysis, a two-stage model-based trial design was evaluated retrospectively using data from the Phase I program with the aurora kinase inhibitor barasertib. Methods Data from two Phase I trials and four regimens were used (n = 79). Using barasertib-hydroxy QPA plasma concentrations and neutrophil count data from only study 1A, a PKPD model was developed and subsequently used to predict the MTD and a safe starting dose for the other trials. Results The PKPD model based on data from the first study adequately described the time course of neutrophil count fluctuation. The two-stage model-based design provided safe starting doses for subsequent phase I trials for barasertib. Predicted safe starting dose levels were higher than those used in two subsequent trials, but lower than used in the other trial. Discussion The two-stage approach could have been applied safely to define starting doses for alternative dosing strategies with barasertib. The limited improvement in efficiency for the phase I program of barasertib may have been due to the fact that starting doses for the studied phase I trials were already nearly optimal. Conclusion Application of the two-stage model-based trial design in Phase I programs with novel anti-cancer drugs that cause haematological toxicity is feasible, safe, and may lead to a reduction in the number of patient treated at sub-therapeutic dose-levels
    • …
    corecore