131 research outputs found

    Peptide receptor radionuclide therapy with 177Lu-DOTATATE for symptomatic control of refractory carcinoid syndrome

    Get PDF
    Context: Peptide receptor radionuclide therapy (PRRT) with [Lutetium-177-DOTA-Tyr3]octreotate (177Lu-DOTATATE) results in an increase of progression-free survival and quality of life in patients with progressive, well-differentiated neuroendocrine neoplasms (NENs). Objective: To study the effect of 177Lu-DOTATATE in patients with carcinoid syndrome and radiologically stable or newly diagnosed disease treated solely for the purpose of symptom reduction. Design: Retrospective cohort study

    A retrospective analysis of the diagnostic performance of 11C-choline PET/CT for detection of hyperfunctioning parathyroid glands after prior negative or discordant imaging in primary hyperparathyroidism

    Get PDF
    BACKGROUND: Identifying the correct location of a parathyroid adenoma in patients with primary hyperparathyroidism (pHPT) is crucial as it can guide surgical treatment. This study aimed to determine the diagnostic performance of 11C-choline PET/CT in patients with pHPT as a next in-line scan after primary negative or discordant first-line imaging. METHODS: This was a retrospective single-center cohort study. All patients with pHPT that were scanned utilizing 11C-choline PET/CT, after prior negative or discordant imaging, between 2015 and 2019 and who subsequently underwent parathyroid surgery were included. The results of the 11C-choline PET/CT were evaluated lesion-based, with surgical exploration and histopathological examination as the gold standard. RESULTS: In total, 36 patients were included of which three patients were known to have Multiple Endocrine Neoplasia (MEN) syndrome. In these 36 patients, 40 lesions were identified on 11C-choline PET/CT and 37 parathyroid lesions were surgically removed. In 34/36 (94%) patients a focused parathyroidectomy was performed, in one patient a cervical exploration due to an ectopically identified adenoma, and in one patient a bilateral exploration was performed because of a double adenoma. Overall, per-lesion sensitivity of 11C-choline PET/CT was 97%, the positive predictive value was 95% and the accuracy was 94% for all parathyroid lesions. CONCLUSIONS: In patients with pHPT and prior negative or discordant first-line imaging results, pathological parathyroid glands can be localized by 11C-choline PET/CT with high sensitivity and accuracy

    Dynamic Interactive Social Cognition Training in Virtual Reality (DiSCoVR) versus Virtual Reality Relaxation (VRelax) for People With a Psychotic Disorder:A Single-Blind Multicenter Randomized Controlled Trial

    Get PDF
    BACKGROUND AND HYPOTHESIS: Social cognition training (SCT), an intervention for social cognition and social functioning, might be improved by using virtual reality (VR), because VR may offer better opportunities to practice in a potentially more realistic environment. To date, no controlled studies have investigated VR-SCT. This study investigated a VR-SCT, "DiSCoVR". We hypothesized that DiSCoVR would improve social cognition and social functioning. STUDY DESIGN: Participants were randomized to DiSCoVR (n = 41) or VR relaxation ('VRelax', n = 40), an active control condition, and completed 16 twice-weekly sessions. Three assessments (baseline, posttreatment, and 3-month follow-up) were performed by blinded assessors. The primary outcome was social cognition (emotion perception and theory of mind). Secondary outcomes included social functioning (measured with an interview and experience sampling), psychiatric symptoms, information processing, and self-esteem. Data were analyzed using mixed-models regression analysis. Treatment effects were evaluated by the time by condition interaction terms. STUDY RESULTS: No significant time by condition interactions were found for any of the outcome variables, indicating an absence of treatment effects. Between-group effect sizes ranged from negligible to moderate (Cohen's d < |0.53|). Main effects of time were found for several outcomes. CONCLUSIONS: These results suggest that DiSCoVR was not effective, possibly because of inadequate simulation of emotional expressions in VR. This lack of efficacy may indicate that current SCT protocols are relatively unsuitable for improving social functioning. Previous studies showed small to moderate effects on higher order social cognition, but the SCT approach may need critical reevaluation, as it may not sufficiently lead to functional improvement

    Initiating pancreatic neuroendocrine tumour (pNET) screening in young MEN1 patients:results from the DutchMEN Study Group

    Get PDF
    Context: Nonfunctioning pancreatic neuroendocrine tumors (NF-pNETs) are highly prevalent and constitute an important cause of mortality in patients with multiple endocrine neoplasia type 1 (MEN1). Still, the optimal age to initiate screening for pNETs is under debate. Objective: The aim of this work is to assess the age of occurrence of clinically relevant NF-pNETs in young MEN1 patients. Methods: Pancreatic imaging data of MEN1 patients were retrieved from the DutchMEN Study Group database. Interval-censored survival methods were used to describe age-related penetrance, compare survival curves, and develop a parametric model for estimating the risk of having clinically relevant NF-pNET at various ages. The primary objective was to assess age at occurrence of clinically relevant NF-pNET (size ≥†20 mm or rapid growth); secondary objectives were the age at occurrence of NF-pNET of any size and pNET-associated metastasized disease. Results: Five of 350 patients developed clinically relevant NF-pNETs before age 18 years, 2 of whom subsequently developed lymph node metastases. No differences in clinically relevant NF-pNET-free survival were found for sex, time frame, and type of MEN1 diagnosis or genotype. The estimated ages (median, 95% CI) at a 1%, 2.5%, and 5% risk of having developed a clinically relevant tumor are 9.5 (6.5-12.7), 13.5 (10.2-16.9), and 17.8 years (14.3-21.4), respectively. Conclusion: Analyses from this population-based cohort indicate that start of surveillance for NF-pNETs with pancreatic imaging at age 13 to 14 years is justified. The psychological and medical burden of screening at a young age should be considered

    Axonal response of mitochondria to demyelination and complex IV activity within demyelinated axons in experimental models of multiple sclerosis

    Get PDF
    AIMS: Axonal injury in multiple sclerosis (MS) and experimental models is most frequently detected in acutely demyelinating lesions. We recently reported a compensatory neuronal response, where mitochondria move to the acutely demyelinated axon and increase the mitochondrial content following lysolecithin-induced demyelination. We termed this homeostatic phenomenon, which is also evident in MS, the axonal response of mitochondria to demyelination (ARMD). The aim of this study is to determine whether ARMD is consistently evident in experimental demyelination and how its perturbation relates to axonal injury.METHODS: In the present study, we assessed axonal mitochondrial content as well as axonal mitochondrial respiratory chain complex IV activity (cytochrome c oxidase or COX) of axons and related these to axonal injury in nine different experimental disease models. We used immunofluorescent histochemistry as well as sequential COX histochemistry followed by immunofluorescent labelling of mitochondria and axons.RESULTS: We found ARMD a consistent and robust phenomenon in all experimental disease models. The increase in mitochondrial content within demyelinated axons, however, was not always accompanied by a proportionate increase in complex IV activity, particularly in highly inflammatory models such as experimental autoimmune encephalomyelitis (EAE). Axonal complex IV activity inversely correlated with the extent of axonal injury in experimental disease models.CONCLUSIONS: Our findings indicate that ARMD is a consistent and prominent feature and emphasise the importance of complex IV activity in the context of ARMD, especially in autoimmune inflammatory demyelination, paving the way for the development of novel neuroprotective therapies.</p

    Enhanced axonal response of mitochondria to demyelination offers neuroprotection:implications for multiple sclerosis

    Get PDF
    Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochromecoxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons,and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation.Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.</p

    Enhanced axonal response of mitochondria to demyelination offers neuroprotection:implications for multiple sclerosis

    Get PDF
    Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochrome c oxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons, and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation. Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.</p

    Biogeography of Amazonian fishes: deconstructing river basins as biogeographic units

    Full text link

    The Future of the Benelux Defence Cooperation

    No full text
    • …
    corecore