62 research outputs found

    Predictive value of neurological examination for early cortical responses to somatosensory evoked potentials in patients with postanoxic coma

    Get PDF
    Bilateral absence of cortical N20 responses of median nerve somatosensory evoked potentials (SEP) predicts poor neurological outcome in postanoxic coma after cardiopulmonary resuscitation (CPR). Although SEP is easy to perform and available in most hospitals, it is worthwhile to know how neurological signs are associated with SEP results. The aim of this study was to investigate whether specific clinical neurological signs are associated with either an absent or a present median nerve SEP in patients after CPR. Data from the previously published multicenter prospective cohort study PROPAC (prognosis in postanoxic coma, 2000–2003) were used. Neurological examination, consisting of Glasgow Coma Score (GCS) and brain stem reflexes, and SEP were performed 24, 48, and 72 h after CPR. Positive predictive values for predicting absent and present SEP, as well as diagnostic accuracy were calculated. Data of 407 patients were included. Of the 781 SEPs performed, N20 s were present in 401, bilaterally absent in 299, and 81 SEPs were technically undeterminable. The highest positive predictive values (0.63–0.91) for an absent SEP were found for absent pupillary light responses. The highest positive predictive values (0.71–0.83) for a present SEP were found for motor scores of withdrawal to painful stimuli or better. Multivariate analyses showed a fair diagnostic accuracy (0.78) for neurological examination in predicting an absent or present SEP at 48 or 72 h after CPR. This study shows that neurological examination cannot reliably predict absent or present cortical N20 responses in median nerve SEPs in patients after CPR

    Acute posthypoxic myoclonus after cardiopulmonary resuscitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute posthypoxic myoclonus (PHM) can occur in patients admitted after cardiopulmonary resuscitation (CPR) and is considered to have a poor prognosis. The origin can be cortical and/or subcortical and this might be an important determinant for treatment options and prognosis. The aim of the study was to investigate whether acute PHM originates from cortical or subcortical structures, using somatosensory evoked potential (SEP) and electroencephalogram (EEG).</p> <p>Methods</p> <p>Patients with acute PHM (focal myoclonus or status myoclonus) within 72 hours after CPR were retrospectively selected from a multicenter cohort study. All patients were treated with hypothermia. Criteria for cortical origin of the myoclonus were: giant SEP potentials; or epileptic activity, status epilepticus, or generalized periodic discharges on the EEG (no back-averaging was used). Good outcome was defined as good recovery or moderate disability after 6 months.</p> <p>Results</p> <p>Acute PHM was reported in 79/391 patients (20%). SEPs were available in 51/79 patients and in 27 of them (53%) N20 potentials were present. Giant potentials were seen in 3 patients. EEGs were available in 36/79 patients with 23/36 (64%) patients fulfilling criteria for a cortical origin. Nine patients (12%) had a good outcome. A broad variety of drugs was used for treatment.</p> <p>Conclusions</p> <p>The results of this study show that acute PHM originates from subcortical, as well as cortical structures. Outcome of patients admitted after CPR who develop acute PHM in this cohort was better than previously reported in literature. The broad variety of drugs used for treatment shows the existing uncertainty about optimal treatment.</p

    A clinical and EEG scoring system that predicts early cortical response (N20) to somatosensory evoked potentials and outcome after cardiac arrest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anoxic coma following cardiac arrest is a common problem with ethical, social, and legal consequences. Except for unfavorable somatosensory-evoked potentials (SSEP) results, predictors of unfavorable outcome with a 100% specificity and a high sensitivity are lacking. The aim of the current research was to construct a clinical and EEG scoring system that predicts early cortical response (N20) to somatosensory evoked potentials and 6-months outcome in comatose patients after cardiac arrest.</p> <p>Methods</p> <p>We retrospectively reviewed the records of all consecutive patients who suffered cardiac arrest outside our hospital and were subsequently admitted to our facility from November 2002 to July 2006. We scored each case based on early clinical and EEG factors associated with unfavorable SSEPs, and we assessed the ability of this score to predict SSEP results and outcome.</p> <p>Results</p> <p>Sixty-six patients qualified for inclusion in the cohort. Among them, 34 (52%) had unfavorable SSEP results. At day three, factors independently associated with unfavorable SSEPs were: absence of corneal (14 points) and pupillary (21 points) reflexes, myoclonus (25 points), extensor or absent motor response to painful stimulation (28 points), and malignant EEG (11 points). A score >40 points had a sensitivity of 85%, a specificity of 84%, and a positive predictive value (PPV) of 85% to predict unfavorable SSEP results. A score >88 points had a PPV of 100%, but a sensitivity of 18%. Overall, this score had an area under ROC curves of 0.919. In addition, at day three, a score > 69 points had a PPV of 100% with a sensitivity of 32% to predict death or vegetative state.</p> <p>Conclusion</p> <p>A scoring system based on a combination of clinical and EEG findings can predict the absence of early cortical response to SSEPs. In settings without access to SSEPs, this score may help decision-making in a subset of comatose survivors after a cardiac arrest.</p

    Optimizing the two-step floating catchment area method for measuring spatial accessibility to medical clinics in Montreal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reducing spatial access disparities to healthcare services is a growing priority for healthcare planners especially among developed countries with aging populations. There is thus a pressing need to determine which populations do not enjoy access to healthcare, yet efforts to quantify such disparities in spatial accessibility have been hampered by a lack of satisfactory measurements and methods. This study compares an optimised and the conventional version of the two-step floating catchment area (2SFCA) method to assess spatial accessibility to medical clinics in Montreal.</p> <p>Methods</p> <p>We first computed catchments around existing medical clinics of Montreal Island based on the shortest network distance. Population nested in dissemination areas were used to determine potential users of a given medical clinic. To optimize the method, medical clinics (supply) were weighted by the number of physicians working in each clinic, while the previous year's medical clinic users were computed by ten years age group was used as weighting coefficient for potential users of each medical clinic (demand).</p> <p>Results</p> <p>The spatial accessibility score (SA) increased considerably with the optimisation method. Within a distance of 1 Km, for instance, the maximum clinic accessible for 1,000 persons is 2.4 when the conventional method is used, compared with 27.7 for the optimized method. The t-test indicates a significant difference between the conventional and the optimized 2SFCA methods. Also, results of the differences between the two methods reveal a clustering of residuals when distance increases. In other words, a low threshold would be associated with a lack of precision.</p> <p>Conclusion</p> <p>Results of this study suggest that a greater effort must be made ameliorate spatial accessibility to medical clinics in Montreal. To ensure that health resources are allocated in the interest of the population, health planners and the government should consider a strategy in the sitting of future clinics which would provide spatial access to the greatest number of people.</p

    Improving the clinical assessment of consciousness with advances in electrophysiological and neuroimaging techniques

    Get PDF
    In clinical neurology, a comprehensive understanding of consciousness has been regarded as an abstract concept - best left to philosophers. However, times are changing and the need to clinically assess consciousness is increasingly becoming a real-world, practical challenge. Current methods for evaluating altered levels of consciousness are highly reliant on either behavioural measures or anatomical imaging. While these methods have some utility, estimates of misdiagnosis are worrisome (as high as 43%) - clearly this is a major clinical problem. The solution must involve objective, physiologically based measures that do not rely on behaviour. This paper reviews recent advances in physiologically based measures that enable better evaluation of consciousness states (coma, vegetative state, minimally conscious state, and locked in syndrome). Based on the evidence to-date, electroencephalographic and neuroimaging based assessments of consciousness provide valuable information for evaluation of residual function, formation of differential diagnoses, and estimation of prognosis

    Cildb: a knowledgebase for centrosomes and cilia

    Get PDF
    Ciliopathies, pleiotropic diseases provoked by defects in the structure or function of cilia or flagella, reflect the multiple roles of cilia during development, in stem cells, in somatic organs and germ cells. High throughput studies have revealed several hundred proteins that are involved in the composition, function or biogenesis of cilia. The corresponding genes are potential candidates for orphan ciliopathies. To study ciliary genes, model organisms are used in which particular questions on motility, sensory or developmental functions can be approached by genetics. In the course of high throughput studies of cilia in Paramecium tetraurelia, we were confronted with the problem of comparing our results with those obtained in other model organisms. We therefore developed a novel knowledgebase, Cildb, that integrates ciliary data from heterogeneous sources. Cildb links orthology relationships among 18 species to high throughput ciliary studies, and to OMIM data on human hereditary diseases. The web interface of Cildb comprises three tools, BioMart for complex queries, BLAST for sequence homology searches and GBrowse for browsing the human genome in relation to OMIM information for human diseases. Cildb can be used for interspecies comparisons, building candidate ciliary proteomes in any species, or identifying candidate ciliopathy genes
    corecore