228 research outputs found

    Nursing the Primary Care Shortage Back to Health: How Expanding Nurse Practitioner Autonomy Can Safely and Economically Meet the Growing Demand for Basic Health Care

    Get PDF
    This article first discusses the history and educational requirements of the Nurse Practitioner profession. It then discusses the policy reasons why Nurse Practitioners should, and do, play an important role in the country\u27s health care delivery system. The core of the article deals with the legal issues surrounding the NP\u27s scope of practice including the need for collaborative agreements with physicians, authority to prescribe drugs, and identification. Finally the article discusses how NPs fit into the health insurance scheme and their liability for malpractice

    Diffusion Models with Deterministic Normalizing Flow Priors

    Full text link
    For faster sampling and higher sample quality, we propose DiNof (Di\textbf{Di}ffusion with No\textbf{No}rmalizing f\textbf{f}low priors), a technique that makes use of normalizing flows and diffusion models. We use normalizing flows to parameterize the noisy data at any arbitrary step of the diffusion process and utilize it as the prior in the reverse diffusion process. More specifically, the forward noising process turns a data distribution into partially noisy data, which are subsequently transformed into a Gaussian distribution by a nonlinear process. The backward denoising procedure begins with a prior created by sampling from the Gaussian distribution and applying the invertible normalizing flow transformations deterministically. To generate the data distribution, the prior then undergoes the remaining diffusion stochastic denoising procedure. Through the reduction of the number of total diffusion steps, we are able to speed up both the forward and backward processes. More importantly, we improve the expressive power of diffusion models by employing both deterministic and stochastic mappings. Experiments on standard image generation datasets demonstrate the advantage of the proposed method over existing approaches. On the unconditional CIFAR10 dataset, for example, we achieve an FID of 2.01 and an Inception score of 9.96. Our method also demonstrates competitive performance on CelebA-HQ-256 dataset as it obtains an FID score of 7.11. Code is available at https://github.com/MohsenZand/DiNof.Comment: 12 pages, 7 figure

    Flow-based Autoregressive Structured Prediction of Human Motion

    Full text link
    A new method is proposed for human motion predition by learning temporal and spatial dependencies in an end-to-end deep neural network. The joint connectivity is explicitly modeled using a novel autoregressive structured prediction representation based on flow-based generative models. We learn a latent space of complex body poses in consecutive frames which is conditioned on the high-dimensional structure input sequence. To construct each latent variable, the general and local smoothness of the joint positions are considered in a generative process using conditional normalizing flows. As a result, all frame-level and joint-level continuities in the sequence are preserved in the model. This enables us to parameterize the inter-frame and intra-frame relationships and joint connectivity for robust long-term predictions as well as short-term prediction. Our experiments on two challenging benchmark datasets of Human3.6M and AMASS demonstrate that our proposed method is able to effectively model the sequence information for motion prediction and outperform other techniques in 42 of the 48 total experiment scenarios to set a new state-of-the-art

    ObjectBox: From Centers to Boxes for Anchor-Free Object Detection

    Full text link
    We present ObjectBox, a novel single-stage anchor-free and highly generalizable object detection approach. As opposed to both existing anchor-based and anchor-free detectors, which are more biased toward specific object scales in their label assignments, we use only object center locations as positive samples and treat all objects equally in different feature levels regardless of the objects' sizes or shapes. Specifically, our label assignment strategy considers the object center locations as shape- and size-agnostic anchors in an anchor-free fashion, and allows learning to occur at all scales for every object. To support this, we define new regression targets as the distances from two corners of the center cell location to the four sides of the bounding box. Moreover, to handle scale-variant objects, we propose a tailored IoU loss to deal with boxes with different sizes. As a result, our proposed object detector does not need any dataset-dependent hyperparameters to be tuned across datasets. We evaluate our method on MS-COCO 2017 and PASCAL VOC 2012 datasets, and compare our results to state-of-the-art methods. We observe that ObjectBox performs favorably in comparison to prior works. Furthermore, we perform rigorous ablation experiments to evaluate different components of our method. Our code is available at: https://github.com/MohsenZand/ObjectBox.Comment: ECCV 2022 Ora

    Multiscale Residual Learning of Graph Convolutional Sequence Chunks for Human Motion Prediction

    Full text link
    A new method is proposed for human motion prediction by learning temporal and spatial dependencies. Recently, multiscale graphs have been developed to model the human body at higher abstraction levels, resulting in more stable motion prediction. Current methods however predetermine scale levels and combine spatially proximal joints to generate coarser scales based on human priors, even though movement patterns in different motion sequences vary and do not fully comply with a fixed graph of spatially connected joints. Another problem with graph convolutional methods is mode collapse, in which predicted poses converge around a mean pose with no discernible movements, particularly in long-term predictions. To tackle these issues, we propose ResChunk, an end-to-end network which explores dynamically correlated body components based on the pairwise relationships between all joints in individual sequences. ResChunk is trained to learn the residuals between target sequence chunks in an autoregressive manner to enforce the temporal connectivities between consecutive chunks. It is hence a sequence-to-sequence prediction network which considers dynamic spatio-temporal features of sequences at multiple levels. Our experiments on two challenging benchmark datasets, CMU Mocap and Human3.6M, demonstrate that our proposed method is able to effectively model the sequence information for motion prediction and outperform other techniques to set a new state-of-the-art. Our code is available at https://github.com/MohsenZand/ResChunk.Comment: 13 page

    Vote from the Center: 6 DoF Pose Estimation in RGB-D Images by Radial Keypoint Voting

    Full text link
    We propose a novel keypoint voting scheme based on intersecting spheres, that is more accurate than existing schemes and allows for a smaller set of more disperse keypoints. The scheme is based upon the distance between points, which as a 1D quantity can be regressed more accurately than the 2D and 3D vector and offset quantities regressed in previous work, yielding more accurate keypoint localization. The scheme forms the basis of the proposed RCVPose method for 6 DoF pose estimation of 3D objects in RGB-D data, which is particularly effective at handling occlusions. A CNN is trained to estimate the distance between the 3D point corresponding to the depth mode of each RGB pixel, and a set of 3 disperse keypoints defined in the object frame. At inference, a sphere centered at each 3D point is generated, of radius equal to this estimated distance. The surfaces of these spheres vote to increment a 3D accumulator space, the peaks of which indicate keypoint locations. The proposed radial voting scheme is more accurate than previous vector or offset schemes, and is robust to disperse keypoints. Experiments demonstrate RCVPose to be highly accurate and competitive, achieving state-of-the-art results on the LINEMOD 99.7% and YCB-Video 97.2% datasets, notably scoring +7.9% higher (71.1%) than previous methods on the challenging Occlusion LINEMOD dataset

    Products Liability for Third Party Replacement or Connected Parts: Changing Tides from the West

    Get PDF
    This Article examines the development of tort law as it applies to the compensation of victims of asbestos exposure; surveys the current landscape regarding the novel products liability claims brought against manufacturers for hazards associated with replacement or associated parts, as well as discuss how courts have wrestled with this issue; and draws upon recent decisions from Washington and California to advocate a bright-line rule that limits liability to those third-party manufacturers in a harmful product’s chain of distribution
    • …
    corecore