8 research outputs found

    Preterm Premature Rupture of the Membranes (PPROM):a study of patient experiences and support needs

    Get PDF
    BackgroundPreterm prelabour rupture of membranes (PPROM) is a common obstetric condition but outcomes can vary depending on gestation. Significant maternal and fetal complications occur including preterm birth, infection, abruption, cord prolapse, pulmonary hypoplasia and even death. Although the need for psychological support is recognised it is unclear how much is actually offered to women and their families. This study aimed to survey the views of women and their families who have undergone PPROM in order to understand the care and psychological burden these families face.MethodsAn online survey was conducted, recruiting women via social media with collaboration from the patient advocacy support group Little Heartbeats. Responses were collated where fields were binary or mean and standard deviations calculated. Framework analysis was used to identify and analyse themes in free text responses. Results180 PPROM pregnancies were described from 177 respondents. Although care was variable and respondents were from across the world there were common themes. Five themes were highlighted which were: a lack of balanced information regarding the condition, support in decision making and support with the process, specific psychological support and ongoing psychological consequences of PPROM.ConclusionThis survey highlights areas in which care needs to be improved for women with PPROM. Previous studies have shown that providing good care during the antenatal period reduces long term psychological morbidity for the whole family. The need for support, with regard both to information provided to women and their families and their psychological support needs to be addressed urgently.<br/

    3D T2w fetal body MRI:automated organ volumetry, growth charts and population-averaged atlas

    Get PDF
    Structural fetal body MRI provides true 3D information required for volumetry of fetal organs. However, current clinical and research practice primarily relies on manual slice-wise segmentation of raw T2-weighted stacks, which is time consuming, subject to inter- and intra-observer bias and affected by motion-corruption. Furthermore, there are no existing standard guidelines defining a universal approach to parcellation of fetal organs. This work produces the first parcellation protocol of the fetal body organs for motion-corrected 3D fetal body MRI. It includes 10 organ ROIs relevant to fetal quantitative volumetry studies. We also introduce the first population-averaged T2w MRI atlas of the fetal body. The protocol was used as a basis for training of a neural network for automated organ segmentation. It showed robust performance for different gestational ages. This solution minimises the need for manual editing and significantly reduces time. The general feasibility of the proposed pipeline was also assessed by analysis of organ growth charts created from automated parcellations of 91 normal control 3T MRI datasets that showed expected increase in volumetry during 22-38 weeks gestational age range. In addition, the results of comparison between 60 normal and 12 fetal growth restriction datasets revealed significant differences in organ volumes.</p

    Multi-modal MRI reveals changes in placental function following preterm premature rupture of membranes

    Get PDF
    PURPOSE: Preterm premature rupture of membranes complicates up to 40% of premature deliveries. Fetal infection may occur in the absence of maternal symptoms, delaying diagnosis and increasing morbidity and mortality. A noninvasive antenatal assessment of early signs of placental inflammation is therefore urgently required. METHODS: Sixteen women with preterm premature rupture of membranes < 34 weeks gestation and 60 women with uncomplicated pregnancies were prospectively recruited. A modified diffusion-weighted spin-echo single shot EPI sequence with a diffusion preparation acquiring 264 unique parameter combinations in < 9 min was obtained on a clinical 3 Tesla MRI scanner. The data was fitted to a 2-compartment T 2 * T2∗ {\mathrm{T}}_2^{\ast } -intravoxel incoherent motion model comprising fast and slowly circulating fluid pools to obtain quantitative information on perfusion, density, and tissue composition. Z values were calculated, and correlation with time from between the rupture of membranes and the scan, gestational age at delivery, and time between scan and delivery assessed. RESULTS: Placental T 2 * T2∗ {\mathrm{T}}_2^{\ast } was significantly reduced in preterm premature rupture of membranes, and the 2-compartmental model demonstrated that this decline is mainly linked to the perfusion component observed in the placental parenchyma. Multi-modal MRI measurement of placental function is linked to gestational age at delivery and time from membrane rupture. CONCLUSION: More complex models and data acquisition can potentially improve fitting of the underlying etiology of preterm birth compared with individual single-contrast models and contribute to additional insights in the future. This will need validation in larger cohorts. A multi-modal MRI acquisition between rupture of the membranes and delivery can be used to measure placental function and is linked to gestational age at delivery

    Antenatal diagnosis of chorioamnionitis:A review of the potential role of fetal and placental imaging

    No full text
    Chorioamnionitis is present in up to 70% of spontaneous preterm births. It is defined as an acute inflammation of the chorion, with or without involvement of the amnion, and is evidence of a maternal immunological response to infection. A fetal inflammatory response can coexist and is diagnosed on placental histopathology postnatally. Fetal inflammatory response syndrome (FIRS) is associated with poorer fetal and neonatal outcomes. The only antenatal diagnostic test is amniocentesis which carries risks of miscarriage or preterm birth. Imaging of the fetal immune system, in particular the thymus and the spleen, and the placenta may give valuable information antenatally regarding the diagnosis of fetal inflammatory response. While ultrasound is largely limited to structural information, MRI can complement this with functional information that may provide insight into the metabolic activities of the fetal immune system and placenta. This review discusses fetal and placental imaging in pregnancies complicated by chorioamnionitis and their potential future use in achieving non‐invasive antenatal diagnosis

    Assessment of the fetal lungs in utero

    No full text
    Antenatal diagnosis of abnormal pulmonary development has improved significantly over recent years because of progress in imaging techniques. Two-dimensional ultrasound is the mainstay of investigation of pulmonary pathology during pregnancy, providing good prognostication in conditions such as congenital diaphragmatic hernia; however, it is less validated in other high-risk groups such as those with congenital pulmonary airway malformation or preterm premature rupture of membranes. Three-dimensional assessment of lung volume and size is now possible using ultrasound or magnetic resonance imaging; however, the use of these techniques is still limited because of unpredictable fetal motion, and such tools have also been inadequately validated in high-risk populations other than those with congenital diaphragmatic hernia. The advent of advanced, functional magnetic resonance imaging techniques such as diffusion and T2* imaging, and the development of postprocessing pipelines that facilitate motion correction, have enabled not only more accurate evaluation of pulmonary size, but also assessment of tissue microstructure and perfusion. In the future, fetal magnetic resonance imaging may have an increasing role in the prognostication of pulmonary abnormalities and in monitoring current and future antenatal therapies to enhance lung development. This review aims to examine the current imaging methods available for assessment of antenatal lung development and to outline possible future directions

    Functional MRI Assessment of the Lungs in Fetuses that Deliver Very Preterm: an MRI pilot study.

    No full text
    Objectives: To compare mean pulmonary T2* values and pulmonary volumes in fetuses that subsequently spontaneously delivered before 32 weeks with a control cohort with comparable gestational ages and to assess the value of mean pulmonary T2* as a predictor of preterm birth &lt; 32 weeks’ gestation. Methods: MRI datasets scanned at similar gestational ages were selected from fetuses who spontaneously delivered &lt; 32 weeks of gestation and a control group who subsequently delivered at term with no complications. All women underwent a fetal MRI on a 3 T MRI imaging system. Sequences included T2-weighted single shot fast spin echo and T2* sequences, using gradient echo single shot echo planar sequencing of the fetal thorax. Motion correction was performed using slice-to-volume reconstruction and T2* maps generated using in-house pipelines. Lungs were manually segmented and volumes and mean T2* values calculated for both lungs combined and left and right lung separately. Linear regression was used to compare values between the preterm and control cohorts accounting for the effects of gestation. Receiver operating curves were generated for mean T2* values and pulmonary volume as predictors of preterm birth &lt; 32 weeks’ gestation. Results: Datasets from twenty-eight preterm and 74 control fetuses were suitable for analysis. MRI images were taken at similar fetal gestational ages (preterm cohort (mean ± SD) 24.9 ± 3.3 and control cohort (mean ± SD) 26.5 ± 3.0). Mean gestational age at delivery was 26.4 ± 3.3 for the preterm group and 39.9 ± 1.3 for the control group. Mean pulmonary T2* values remained constant with increasing gestational age while pulmonary volumes increased. Both T2* and pulmonary volumes were lower in the preterm group than in the control group for all parameters (both combined, left, and right lung (p &lt; 0.001 in all cases). Adjusted for gestational age, pulmonary volumes and mean T2* values were good predictors of premature delivery in fetuses &lt; 32 weeks (area under the curve of 0.828 and 0.754 respectively). Conclusion: These findings indicate that mean pulmonary T2* values and volumes were lower in fetuses that subsequently delivered very preterm. This may suggest potentially altered oxygenation and indicate that pulmonary morbidity associated with prematurity has an antenatal antecedent. Future work should explore these results correlating antenatal findings with long term pulmonary outcomes.</p
    corecore