730 research outputs found
Serum hyaluronate as a non-invasive marker of hepatic fibrosis and inflammation in HBeAg-negative chronic hepatitis B
Background: HBV infection is a serious global heath problem. It is crucial to monitor this disease more closely with a non-invasive marker in clinical trials. We aimed to evaluate the predictive value of serum hyaluronate for the presence of extensive liver fibrosis and inflammation.
Methods: 28 healthy volunteers and 65 patients with HBeAg negative chronic hepatitis B were enrolled. Liver biopsies scored according to Ishak system. Association of serum hyaloronate with liver fibrosis and inflammation were assessed, and cut off points for serum hyaluronate levels were identified by receiver operating characteristics (ROC) curves and their values for prediction of fibrosis and inflammation were assessed.
Results: In patients with CHB serum hyaluronate had the most significant correlation and predictive values for the liver fibrosis and inflammation comparing to the other variables. At the cut off point of 126.4 ngm/ml it could discriminate extensive fibrosis from milder ones with sensitivity of 90.9% and specificity of 98.1%. With the same value it could discriminate extensive inflammation from their milder counterparts with sensitivity of 63.6% and specificity of 92.6%.
Conclusion: Serum hyaluronate was the best predictor of extensive liver fibrosis and inflammation and it could discriminate subgroups of patients with chronic hepatitis B. It could be used as a non-invasive test to monitor these patients more closely with developing anti viral agents in clinical trials
Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics
Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis
Types of poisoning in a tertiary care hospital in center of Iran (2014 to 2017)
The global problem of acute poisoning has steadily increased over the past decade. It is an importantcause of morbidity and mortality in developing countries. Better preventive and management strategiescan be developed if the incidence and pattern of acute poisoning is known. The study aims at analyzingthe pattern, cause and mortality rate of poisoning.The study was conducted in aurban and rural area in the center of Iran. This retrospective study was conducted fromJanuary 2014-March 2017. The data was analysed using descriptive and analytical statistics.:Out of the 1329 cases 754 were males and 575 females. Poisoning was common in the age group of 21-30 years. The poisons consumed were as follows:63.8 were suicides, 17.8 accidental and 18.4 had a variety of different reasons. Mortality rate was 6.5.The results of the study showed that the highest rate of poisoning in the young age group was due to suicidal ideation. Accurate training for youth and counseling is of particular importance.Establishment of strict policies against the sale and availability of pesticides and over the counter drugs is an effective way to control drug poisoning. © 2019, Advanced Scientific Research. All rights reserved
Bacterial Symbiont Bioactive Compound of Soft Coral Sinularia Flexibilis and S. Polydactyla
Symbiont bacteria on soft coral can produce bioactive compounds that plays an important role in chemical ecology and as a marine natural product. The purpose of this study was to find and characterize the antibacterial activities of active compounds extracted from bacterial symbionts of soft coral S. flexibilis and S. polydactyla. The methods used in this study were culture and isolation of bacterial symbionts, extraction of compounds, antibacterial bioassay, and identification of bioactive compounds using the LC-MS analyses. Four isolates of bacterial symbionts were obtained from two samples of soft corals, 2 isolates of Pseudomonas diminuta (A1) and Edwardsiellla hoshinae (A2) from soft coral S. flexibilis, and 2 isolates of E. hoshinae (B1) and P. acidovorans (B4) from S. polydactila. Antibacterial activity were found only from the extracts of bacterial symbionts P. diminuta (A1) and from S. flexiblis about 10.16 ± 0.3mm (for B. subtilis), 8.66 ± 0.8 mm (E. coli) and 9.86 ± 1.7mm (S. dysentri). No antibacterial activity found from the extracts of S. polydactyla. The results of LC MS analysis showed that the group of diterpenes sinularin produced by soft corals S. flexibilis and bacterial symbionts isolates of P. diminuta (A1)
Experimental Biological Protocols with Formal Semantics
Both experimental and computational biology is becoming increasingly
automated. Laboratory experiments are now performed automatically on
high-throughput machinery, while computational models are synthesized or
inferred automatically from data. However, integration between automated tasks
in the process of biological discovery is still lacking, largely due to
incompatible or missing formal representations. While theories are expressed
formally as computational models, existing languages for encoding and
automating experimental protocols often lack formal semantics. This makes it
challenging to extract novel understanding by identifying when theory and
experimental evidence disagree due to errors in the models or the protocols
used to validate them. To address this, we formalize the syntax of a core
protocol language, which provides a unified description for the models of
biochemical systems being experimented on, together with the discrete events
representing the liquid-handling steps of biological protocols. We present both
a deterministic and a stochastic semantics to this language, both defined in
terms of hybrid processes. In particular, the stochastic semantics captures
uncertainties in equipment tolerances, making it a suitable tool for both
experimental and computational biologists. We illustrate how the proposed
protocol language can be used for automated verification and synthesis of
laboratory experiments on case studies from the fields of chemistry and
molecular programming
Imaging stray magnetic field of individual ferromagnetic nanotubes
We use a scanning nanometer-scale superconducting quantum interference device
to map the stray magnetic field produced by individual ferromagnetic nanotubes
(FNTs) as a function of applied magnetic field. The images are taken as each
FNT is led through magnetic reversal and are compared with micromagnetic
simulations, which correspond to specific magnetization configurations. In
magnetic fields applied perpendicular to the FNT long axis, their magnetization
appears to reverse through vortex states, i.e.\ configurations with vortex end
domains or -- in the case of a sufficiently short FNT -- with a single global
vortex. Geometrical imperfections in the samples and the resulting distortion
of idealized mangetization configurations influence the measured stray-field
patterns.Comment: 14 pages, 4 figure
Recommended from our members
Analysis of enriched rare variants in JPH2-encoded junctophilin-2 among Greater Middle Eastern individuals reveals a novel homozygous variant associated with neonatal dilated cardiomyopathy.
Junctophilin-2 (JPH2) is a part of the junctional membrane complex that facilitates calcium-handling in the cardiomyocyte. Previously, missense variants in JPH2 have been linked to hypertrophic cardiomyopathy; however, pathogenic "loss of function" (LOF) variants have not been described. Family-based genetic analysis of GME individuals with cardiomyopathic disease identified an Iranian patient with dilated cardiomyopathy (DCM) as a carrier of a novel, homozygous single nucleotide insertion in JPH2 resulting in a stop codon (JPH2-p.E641*). A second Iranian family with consanguineous parents hosting an identical heterozygous variant had 2 children die in childhood from cardiac failure. To characterize ethnicity-dependent genetic variability in JPH2 and to identify homozygous JPH2 variants associated with cardiac disease, we identified variants in JPH2 in a worldwide control cohort (gnomAD) and 2 similar cohorts from the Greater Middle East (GME Variome, Iranome). These were compared against ethnicity-matched clinical whole exome sequencing (WES) referral tests and a case cohort of individuals with hypertrophic cardiomyopathy (HCM) based on comprehensive review of the literature. Worldwide, 1.45% of healthy individuals hosted a rare JPH2 variant with a significantly higher proportion among GME individuals (4.45%); LOF variants were rare overall (0.04%) yet were most prevalent in GME (0.21%). The increased prevalence of LOF variants in GME individuals was corroborated among region-specific, clinical WES cohorts. In conclusion, we report ethnic-specific differences in JPH2 rare variants, with GME individuals being at higher risk of hosting homozygous LOF variants. This conclusion is supported by the identification of a novel JPH2 LOF variant confirmed by segregation analysis resulting in autosomal recessive pediatric DCM due to presumptive JPH2 truncation
Mutation analysis of KRAS and BRAF genes in metastatic colorectal cancer: A first large scale study from Iran
Background: The investigation of mutation patterns in oncogenes potentially can make available a reliable mechanism for management and treatment decisions for patients with colorectal cancer (CRC). This study concerns the rate of KRAS and BRAF genes mutations in Iranian metastatic colorectal cancer (mCRC) patients, as well as associations of genotypes with clinicopathological features. Materials and Methods: A total of 1,000 mCRC specimens collected from 2008 to 2012 that referred to the Mehr Hospital and Partolab center, Tehran, Iran enrolled in this cross sectional study. Using HRM, Dxs Therascreen and Pyrosequencing methods, we analyzed the mutational status of KRAS and BRAF genes in these. Results: KRAS mutations were present in 33.6 cases (n=336). Of KRAS mutation positive cases, 85.1 were in codon 12 and 14.9 were in codon 13. The most frequent mutation at KRAS codon 12 was Gly12Asp; BRAF mutations were not found in any mCRC patients (n=242). In addition, we observed a strong correlation of KRAS mutations with some clinicopathological characteristics. Conclusions: KRAS mutations are frequent in mCRCs while presence of BRAF mutations in these patients is rare. Moreover, associations of KRAS genotypes with non-mucinous adenocarcinoma and depth of invasion (pT3) were remarkable
- …