716 research outputs found
Recommended from our members
Recombinant Anti-Tenascin Antibody Contructs
The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploit our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr -particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti-tenascin constructs with optimized properties for use in tandem with short half life radionuclides such as 211At ( as well as 1.8-hr 18F for PET imaging) is warranted. Our specific aims are: 1) to construct a bivalent, anti-tenascin molecule containing murine 81C6 variable regions and the human IgG2 hinge region. Both the CH2 domain deletion construct (CH2) and F(ab’)2 will be investigated; 2) to construct a single-chain Fv dimer or multimer with adequate stability, affinity and immunoreactivity for use in tandem with 211At for therapy and 18F for imaging; 3) to generate higher affinity scFv constructs reactive with the alternatively spliced fibronectin type III repeats CD of the tenascin molecule via phage display technology and site-directed mutagenesis; 4) to label promising anti-tenascin constructs with radioiodine, 211At, and 18F and evaluate their potential as radiodiagnostic and radiotherapeutic agents. The proposed studies include: characterization of affinity and immunoreactivity after labeling; evaluation of tissue distribution and projected dosimetry in normal mice, and athymic rodents with subcutaneous, intracranial and neoplastic meningitis xenografts; investigation of the nature of low and high molecular weight labeled catabolites generated in mice; and assessment of cytotoxicity in vitro and in vivo models of human glioma, and possibly, other tenascin expressing tumors; and 5) to investigate strategies for labeling scFv monomers and dimers which will minimize retention of the radiohalogen in the kidneys through the use of negatively charged templates
ASTATINE-211 RADIOCHEMISTRY: THE DEVELOPMENT OF METHODOLOGIES FOR HIGH ACTIVITY LEVEL RADIOSYNTHESIS
Targeted radionuclide therapy is emerging as a viable approach for cancer treatment because of its potential for delivering curative doses of radiation to malignant cell populations while sparing normal tissues. Alpha particles such as those emitted by 211At are particularly attractive for this purpose because of their short path length in tissue and high energy, making them highly effective in killing cancer cells. The current impact of targeted radiotherapy in the clinical domain remains limited despite the fact that in many cases, potentially useful molecular targets and labeled compounds have already been identified. Unfortunately, putting these concepts into practice has been impeded by limitations in radiochemistry methodologies. A critical problem is that the synthesis of therapeutic radiopharmaceuticals provides additional challenges in comparison to diagnostic reagents because of the need to perform radio-synthesis at high levels of radioactivity. This is particularly important for {alpha}-particle emitters such as 211At because they deposit large amounts of energy in a highly focal manner. The overall objective of this project is to develop convenient and reproducible radiochemical methodologies for the radiohalogenation of molecules with the {alpha}-particle emitter 211At at the radioactivity levels needed for clinical studies. Our goal is to address two problems in astatine radiochemistry: First, a well known characteristic of 211At chemistry is that yields for electrophilic astatination reactions decline as the time interval after radionuclide isolation from the cyclotron target increases. This is a critical problem that must be addressed if cyclotrons are to be able to efficiently supply 211At to remote users. And second, when the preparation of high levels of 211At-labeled compounds is attempted, the radiochemical yields can be considerably lower than those encountered at tracer dose. For these reasons, clinical evaluation of promising 211At-labeled targeted radiotherapeutics currently is a daunting task. Our central hypothesis is that improvements in 211At radiochemistry are critically dependent on gaining an understanding of and compensating for the effects of radiolysis induced by 211At {alpha}-particles. Because of the widespread interest in labeling antibodies, antibody fragments and peptides with 211At, our proposed work plan will initially focus on reagents that we have developed for this purpose. Part of our strategy is the use of synthetic precursors immobilized on polymeric resins or perfluorous and triarylphosphonium supports. Their use could eliminate the need for a purification step to separate unreacted tin precursor from labeled product and hopefully provide a simple kit technology that could be utilized at other institutions. The specific aims of this project are: (1) To optimze methods for 211At production and isolation of 211At from cyclotron targets; (2) To develop convenient and reproducible methodologies for high activity level and high specific activity radiohalogenation of biomolecules with 211At; (3) to develop a procedure for extending the shelf-life of 211At beyond a few hours so that this radionuclide can be utilized at centers remote from its site of production; and (4) to work out high activity level synthesis methods for utilizing support immobilized tin precursors for 211At labeling. If we are successful in achieving our goals, the radiochemical methodologies that are developed could greatly facilitate the use of 211At-labeled targeted cancer therapeutics in patients, even at institutions that are distant from the few sites currently available for 211At production
3-[211At]astato-4-fluorobenzylguanidine: a potential therapeutic agent with prolonged retention by neuroblastoma cells.
An analogue of meta-iodobenzylguanidine (MIBG) in which an aromatic hydrogen was replaced with fluorine has been found to possess many properties similar to those of the parent compound. Moreover, 4-fluoro-3-iodobenzylguanidine (FIBG) was retained in vitro by human neuroblastoma cells to a much greater extent than MIBG itself. Since alpha-emitters such as 211At could be valuable for the treatment of micrometastatic disease, an FIBG analogue in which the iodine atom is replaced by 211At would be of interest. In this study, we have evaluated the in vitro and in vivo properties of 3-[211At]astato-4-fluorobenzylguanidine ([211At]AFBG). The specific binding of [211At]AFBG to SK-N-SH human neuroblastoma cells remained fairly constant over 2- to 3-log activity range and was similar to that of [131I]MIBG. The uptake of [211At]AFBG by this cell line was reduced by desipramine, ouabain, 4 degrees C incubation, noradrenaline, unlabelled MIBG and FIBG, suggesting that its uptake is specifically mediated through an active uptake-1 mechanism. Over the 16 h period studied, the amount of [211At]AFBG retained was similar to that of [131I]FIBG, whereas the per cent of retained meta-[211At]astatobenzylguanidine ([211At]MABG) was considerably less than that of [131I]FIBG (53% vs 75%; P < 0.05). The IC50 values for the inhibition of uptake of [131I]MIBG, [211At]MABG, [125I]FIBG and [211At]AFBG by unlabelled MIBG were 209, 300, 407 and 661 nM respectively, suggesting that the affinities of these tracers for the noradrenaline transporter in SK-N-SH cells increase in that order. Compared with [211At]MABG, higher uptake of [211At]AFBG was seen in vivo in normal mouse target tissues such as heart and, to a certain extent, in adrenals. That the uptake of [211At]AFBG in these tissues was related to the uptake-1 mechanism was demonstrated by its reduction when mice were pretreated with desipramine. However, the stability of [211At]AFBG towards in vivo dehalogenation was less than that of [211At]MABG, as evidenced by the higher uptake of 211At in thyroid, spleen, lungs and stomach
Localisation of [131I]MIBG in nude mice bearing SK-N-SH human neuroblastoma xenografts: effect of specific activity.
The biodistribution of no-carrier-added (n.c.a.) meta-[131I]iodobenzylguanidine ([131I]MIBG) and that prepared by the standard isotopic exchange method were compared in athymic mice bearing SK-N-SH human neuroblastoma xenografts. No advantage in tumour uptake was observed for the n.c.a. preparation. BALB/c nu/nu mice exhibited lower uptake in highly innervated normal tissues (heart and adrenals) than normal BALB/c mice. In another experiment, the distribution of n.c.a. [131I]MIBG in the absence or presence (3-9 micrograms) of MIBG carrier was determined. At both 4 h and 24 h, the heart uptake was reduced by a factor of 1.5 even at a dose of 3 micrograms MIBG. Tumour uptake was not significantly altered by various amounts of unlabelled MIBG at either time point
Cytotoxicity of alpha-particle-emitting astatine-211-labelled antibody in tumour spheroids: no effect of hyperthermia.
The high linear energy transfer, alpha-particle-emitting radionuclide astatine-211 (211At) is of interest for certain therapeutic applications; however, because of the 55- to 70-microm path length of its alpha-particles, achieving homogeneous tracer distribution is critical. Hyperthermia may enhance the therapeutic efficacy of alpha-particle endoradiotherapy if it can improve tracer distribution. In this study, we have investigated whether hyperthermia increased the cytotoxicity of an 211At-labelled monoclonal antibody (MAb) in tumour spheroids with a radius (approximately 100 microm) greater than the range of 211At alpha-particles. Hyperthermia for 1 h at 42 degrees C was used because this treatment itself resulted in no regrowth delay. Radiolabelled chimeric MAb 81C6 reactive with the extracellular matrix antigen tenascin was added to spheroids grown from the D-247 MG human glioma cell line at activity concentrations ranging from 0.125 to 250 kBq ml(-1). A significant regrowth delay was observed at 125 and 250 kBq ml(-1) in both hyperthermia-treated and untreated spheroids. For groups receiving hyperthermia, no increase in cytotoxicity was seen compared with normothermic controls at any activity concentration. These results and those from autoradiographs indicate that hyperthermia at 42 degrees C for 1 h had no significant effect on the uptake or distribution of this antitenascin MAb in D-247 MG spheroids
Copper signaling axis as a target for prostate cancer therapeutics.
Previously published reports indicate that serum copper levels are elevated in patients with prostate cancer and that increased copper uptake can be used as a means to image prostate tumors. It is unclear, however, to what extent copper is required for prostate cancer cell function as we observed only modest effects of chelation strategies on the growth of these cells in vitro. With the goal of exploiting prostate cancer cell proclivity for copper uptake, we developed a "conditional lethal" screen to identify compounds whose cytotoxic actions were manifested in a copper-dependent manner. Emerging from this screen was a series of dithiocarbamates, which, when complexed with copper, induced reactive oxygen species-dependent apoptosis of malignant, but not normal, prostate cells. One of the dithiocarbamates identified, disulfiram (DSF), is an FDA-approved drug that has previously yielded disappointing results in clinical trials in patients with recurrent prostate cancer. Similarly, in our studies, DSF alone had a minimal effect on the growth of prostate cancer tumors when propagated as xenografts. However, when DSF was coadministered with copper, a very dramatic inhibition of tumor growth in models of hormone-sensitive and of castrate-resistant disease was observed. Furthermore, we determined that prostate cancer cells express high levels of CTR1, the primary copper transporter, and additional chaperones that are required to maintain intracellular copper homeostasis. The expression levels of most of these proteins are increased further upon treatment of androgen receptor (AR)-positive prostate cancer cell lines with androgens. Not surprisingly, robust CTR1-dependent uptake of copper into prostate cancer cells was observed, an activity that was accentuated by activation of AR. Given these data linking AR to intracellular copper uptake, we believe that dithiocarbamate/copper complexes are likely to be effective for the treatment of patients with prostate cancer whose disease is resistant to classical androgen ablation therapies
- …