4 research outputs found

    Vegetation Type and Fire Severity Mediate Short-Term Post Fire Soil Microbial Responses

    Get PDF
    Background Wildfire severity mediates key dynamics, such as nutrient pulses, that regulate the recovery of ecosystem functioning. Large shifts in vegetation communities associated with plant invasions are often coupled with changes in soil communities; thus, it’s critical to understand how fire severity may interact with vegetation type and soil communities to mediate ecosystem recovery. Methods Following a 2017 wildfire in southern California, soils from areas dominated by native coastal sage scrub or exotic annual grasses that experienced a low or high severity fire event were analyzed for nutrient concentrations and two proxies for ecosystem function—microbial respiration and enzymatic activity potentials over the first-year post-fire. Aims We predicted that increasing fire severity would positively correlate with soil nutrient concentrations. Thus, higher severity burned soil would experience a greater downregulation of enzyme activity as potential microbial nutrient limitation was alleviated, a relationship that would be stronger in shrub dominated soil. Results We observed a strong soil nitrogen (N) pulse post-fire, which was greatest in shrub dominated soil; however, dominant vegetation had a variable effect on microbial responses. Enzyme activities were downregulated in CSS soil, but the grass dominated soil response was inconsistent. After 1 year, soil N remained elevated in burned soil, suggesting that basal soil N concentrations were altered. Conclusions Persistent, residual soil N concentrations are of particular concern in high fire risk ecosystems, which will likely experience increasing fire frequency associated with environmental change; thus, encouraging the regrowth of opportunistic vegetation in subsequent growing seasons will be key to minimize long-term changes to these ecosystems

    Rapid Bacterial and Fungal Successional Dynamics in First Year After Chaparral Wildfire

    Get PDF
    The rise in wildfire frequency and severity across the globe has increased interest in secondary succession. However, despite the role of soil microbial communities in controlling biogeochemical cycling and their role in the regeneration of post-fire vegetation, the lack of measurements immediately post-fire and at high temporal resolution has limited understanding of microbial secondary succession. To fill this knowledge gap, we sampled soils at 17, 25, 34, 67, 95, 131, 187, 286, and 376 days after a southern California wildfire in fire-adapted chaparral shrublands. We assessed bacterial and fungal biomass with qPCR of 16S and 18S and richness and composition with Illumina MiSeq sequencing of 16S and ITS2 amplicons. Fire severely reduced bacterial biomass by 47%, bacterial richness by 46%, fungal biomass by 86%, and fungal richness by 68%. The burned bacterial and fungal communities experienced rapid succession, with 5-6 compositional turnover periods. Analogous to plants, turnover was driven by fire-loving pyrophilous microbes, many of which have been previously found in forests worldwide and changed markedly in abundance over time. Fungal secondary succession was initiated by the Basidiomycete yeast Geminibasidium, which traded off against the filamentous Ascomycetes Pyronema, Aspergillus, and Penicillium. For bacteria, the Proteobacteria Massilia dominated all year, but the Firmicute Bacillus and Proteobacteria Noviherbaspirillum increased in abundance over time. Our high-resolution temporal sampling allowed us to capture post-fire microbial secondary successional dynamics and suggest that putative tradeoffs in thermotolerance, colonization, and competition among dominant pyrophilous microbes control microbial succession with possible implications for ecosystem function

    Soil Metabolome Response to Whole-Ecosystem Warming at the Spruce and Peatland Responses Under Changing Environments Experiment

    Get PDF
    While peatlands have historically stored massive amounts of soil carbon, warming is expected to enhance decomposition, leading to a positive feedback with climate change. In this study, a unique whole-ecosystem warming experiment was conducted in northern Minnesota to warm peat profiles to 2 m deep while keeping water flow intact. After nearly 2 y, warming enhanced the degradation of soil organic matter and increased greenhouse gas production. Changes in organic matter quality with warming were accompanied by a stimulation of methane production relative to carbon dioxide. Our results revealed increased decomposition to be fueled by the availability of reactive carbon substrates produced by surface vegetation. The elevated rates of methanogenesis are likely to persist and exacerbate climate warming

    Small Differences in Ombrotrophy Control Regional-Scale Variation in Methane Cycling Among \u3cem\u3eSphagnum\u3c/em\u3e-Dominated Peatlands

    No full text
    Although methane (CH4) dynamics are known to differ at broad scales among peatland types and with climate, there is limited understanding of the variability associated with anaerobic carbon (C) cycling, and, the mechanisms that control that variability, among low pH, Sphagnum moss-dominated peatlands within a geographical region with similar climate. This is important because upscaling of CH4 emissions to regional and global scales often considers peatlands as a single, or at most two, ecosystem type(s). Here, we report the results from two studies exploring the controls of CH4 cycling in peatlands from the Upper Midwest (USA). Potential CH4 production and resultant CO2:CH4 ratios varied by several orders-of-magnitude among these soils. These differences were only partially explained by pH and fiber content (a measure of degree of decomposition in peat), suggesting other, more complicated controls may drive CH4 cycling in ombrotrophic peat soils. Based in part on the results from this survey, we more intensively examined CH4 dynamics in three bog-like, acidic, Sphagnum-dominated peatlands in northern Minnesota that differed in their degree of ombrotrophy. Net CH4 flux was lowest in the peatland with well-developed hummocks, and the isotopic composition of the CH4 along with methanotroph gene expression indicated a strong role for CH4 oxidation in controlling net CH4 flux. There were limited differences in porewater chemistry (CH4 and dissolved inorganic C concentrations) or microbial community composition among sites, and potential CH4 production was also similar among the sites. Taken together, these experiments demonstrate that high variation in CH4 cycling in seemingly similar peatlands within a single geographical region is common. We suggest a one peatland represents all approach is inappropriate—even among Sphagnum-dominated peatlands—and caution must be used when extrapolating data from a single site to the landscape scale, even for outwardly very similar peatlands. Instead, the macroscale development of peatlands, and concomitantly their microtopography as expressed in the proportion of hummocks, hollows, lawns and pools, need to be considered as central controls over CH4 emissions
    corecore