551 research outputs found
Scaled frequency-dependent transport in the mesoscopically phase-separated colossal magnetoresistive manganite La_{0.625-y}Pr_yCa_{0.375}MnO_3
We address the issue of massive phase separation (PS) in manganite family of
doped Mott insulators through ac conductivity measurements on
LaPrCaMnO (0.375 y 0.275), and
establish applicability of the scaling theory of percolation in the critical
regime of the PS. Measurements of dc resistivity, magnetization (M(T)) and
electron diffraction show incomplete growth of a ferromagnetic (FM) metallic
component on cooling the high temperature charge ordered (CO) phase well below
Curie temperature. The impedance Z(T,f) measured over a frequency
(f) range of 10 Hz to 10 MHz in the critical regime follows a universal scaling
of the form R(T,0)g(f) with 0.86
and the normalized correlation length varying from 1 to 4, suggesting anomalous
diffusion of holes in percolating FM clusters.Comment: 12 pages and 5 figure
Equilibrium and non-equilibrium fluctuations in a glass-forming liquid
Glass-forming liquids display strong fluctuations -- dynamical
heterogeneities -- near their glass transition. By numerically simulating a
binary Weeks-Chandler-Andersen liquid and varying both temperature and
timescale, we investigate the probability distributions of two kinds of local
fluctuations in the non-equilibrium (aging) regime and in the equilibrium
regime; and find them to be very similar in the two regimes and across
temperatures. We also observe that, when appropriately rescaled, the integrated
dynamic susceptibility is very weakly dependent on temperature and very similar
in both regimes.Comment: v1: 5 pages, 4 figures v2: 5 pages, 4 figures. Now includes results
at three temperatures, two of them above T_{MCT} and one below T_{MCT}; and
more extensive discussion of connections to experiment
Spectral responses in granular compaction
The slow compaction of a gently tapped granular packing is reminiscent of the
low-temperature dynamics of structural and spin glasses. Here, I probe the
dynamical spectrum of granular compaction by measuring a complex
(frequency-dependent) volumetric susceptibility . While the
packing density displays glass-like slow relaxations (aging) and
history-dependence (memory) at low tapping amplitudes, the susceptibility
displays very weak aging effects, and its spectrum shows no
sign of a rapidly growing timescale. These features place in
sharp contrast to its dielectric and magnetic counterparts in structural and
spin glasses; instead, bears close similarities to the complex
specific heat of spin glasses. This, I suggest, indicates the glass-like
dynamics in granular compaction are governed by statistically rare relaxation
processes that become increasingly separated in timescale from the typical
relaxations of the system. Finally, I examine the effect of finite system size
on the spectrum of compaction dynamics. Starting from the ansatz that low
frequency processes correspond to large scale particle rearrangements, I
suggest the observed finite size effects are consistent with the suppression of
large-scale collective rearrangements in small systems.Comment: 18 pages, 17 figures. Submitted to PR
Elasticity of highly cross-linked random networks
Starting from a microscopic model of randomly cross-linked particles with
quenched disorder, we calculate the Laudau-Wilson free energy S for arbitrary
cross-link densities. Considering pure shear deformations, S takes the form of
the elastic energy of an isotropic amorphous solid state, from which the shear
modulus can be identified. It is found to be an universal quantity, not
depending on any microscopic length-scales of the model.Comment: 6 pages, 5 figure
Exact Constructions of a Family of Dense Periodic Packings of Tetrahedra
The determination of the densest packings of regular tetrahedra (one of the
five Platonic solids) is attracting great attention as evidenced by the rapid
pace at which packing records are being broken and the fascinating packing
structures that have emerged. Here we provide the most general analytical
formulation to date to construct dense periodic packings of tetrahedra with
four particles per fundamental cell. This analysis results in six-parameter
family of dense tetrahedron packings that includes as special cases recently
discovered "dimer" packings of tetrahedra, including the densest known packings
with density . This study strongly suggests that
the latter set of packings are the densest among all packings with a
four-particle basis. Whether they are the densest packings of tetrahedra among
all packings is an open question, but we offer remarks about this issue.
Moreover, we describe a procedure that provides estimates of upper bounds on
the maximal density of tetrahedron packings, which could aid in assessing the
packing efficiency of candidate dense packings.Comment: It contains 25 pages, 5 figures
Free-energy functional for freezing transitions: Hard sphere systems freezing into crystalline and amorphous structures
A free-energy functional that contains both the symmetry conserved and
symmetry broken parts of the direct pair correlation function has been used to
investigate the freezing of a system of hard spheres into crystalline and
amorphous structures. The freezing parameters for fluid-crystal transition have
been found to be in very good agreement with the results found from
simulations. We considered amorphous structures found from the molecular
dynamics simulations at packing fractions lower than the glass close
packing fraction and investigated their stability compared to that
of a homogeneous fluid. The existence of free-energy minimum corresponding to a
density distribution of overlapping Gaussians centered around an amorphous
lattice depicts the deeply supercooled state with a heterogeneous density
profile
Superfluid-insulator transition and BCS-BEC crossover in dirty ultracold Fermi gas
Superfluid-insulator transition in an ultracold Fermi gas in the external
disorder potential of the amplitude is studied as a function of the
concentration of the gas and magnetic field in the presence of the
Feshbach resonance. We find the zero temperature phase diagrams in the plane
() at a given and in the plane at a given . Our
results for BEC side of the diagram are also valid for the superfluid-insulator
transition in a Bose gas.Comment: Reference added, typos correcte
Structural Order in Glassy Water
We investigate structural order in glassy water by performing classical
molecular dynamics simulations using the extended simple point charge (SPC/E)
model of water. We perform isochoric cooling simulations across the glass
transition temperature at different cooling rates and densities. We quantify
structural order by orientational and translational order metrics. Upon cooling
the liquid into the glassy state, both the orientational order parameter
and translational order parameter increase. At T=0 K, the glasses fall
on a line in the - plane or {\it order map}.
The position of this line depends only on density and coincides with the
location in the order map of the inherent structures (IS) sampled upon cooling.
We evaluate the energy of the IS, , and find that both order
parameters for the IS are proportional to . We also study the
structural order during the transformation of low-density amorphous ice (LDA)
to high-density amorphous ice (HDA) upon isothermal compression and are able to
identify distinct regions in the order map corresponding to these glasses.
Comparison of the order parameters for LDA and HDA with those obtained upon
isochoric cooling indicates major structural differences between glasses
obtained by cooling and glasses obtained by compression. These structural
differences are only weakly reflected in the pair correlation function. We also
characterize the evolution of structural order upon isobaric annealing, leading
at high pressure to very-high density amorphous ice (VHDA).Comment: submitte
Experimental study of the jamming transition at zero temperature
We experimentally investigate jamming in a quasi-two-dimensional granular
system of automatically swelling particles and show that a maximum in the
height of the first peak of the pair correlation function is a structural
signature of the jamming transition at zero temperature. The same signature is
also found in the second peak of the pair correlation function, but not in the
third peak, reflecting the underlying singularity of jamming transition. We
also study the development of clusters in this system. A static length scale
extracted from the cluster structure reaches the size of the system when the
system approaches the jamming point. Finally, we show that in a highly
inhomogeneous system, friction causes the system to jam in series of steps. In
this case, jamming may be obtained through successive buckling of force chains.Comment: 15 pages, 17 figure
Density of States for a Specified Correlation Function and the Energy Landscape
The degeneracy of two-phase disordered microstructures consistent with a
specified correlation function is analyzed by mapping it to a ground-state
degeneracy. We determine for the first time the associated density of states
via a Monte Carlo algorithm. Our results are described in terms of the
roughness of the energy landscape, defined on a hypercubic configuration space.
The use of a Hamming distance in this space enables us to define a roughness
metric, which is calculated from the correlation function alone and related
quantitatively to the structural degeneracy. This relation is validated for a
wide variety of disordered systems.Comment: Accepted for publication in Physical Review Letter
- …