3 research outputs found

    Ionospheric Non-linear Effects Observed During Very-Long-Distance HF Propagation

    Get PDF
    A new super-long-range wave propagation technique was implemented at different High Frequency (HF) heating facilities. The HF waves radiated by a powerful heater were scattered into the ionospheric waveguide by the stimulated field aligned striations. This waveguide was formed in a valley region between the E- and F- layers of the ionosphere. The wave trapping and channeling provide super-long-range propagation of HF heater signals detected at the Ukrainian Antarctic Academik Vernadsky Station (UAS) which is many thousand kilometers away from the corresponding HF heating facility. This paper aims to study the excitation of the ionospheric waveguide due to the scattering of the HF heating wave by artificial field aligned irregularities. In addition, the probing of stimulated ionospheric irregularities can be obtained from analyses of the signals received at far distance from the HF heater. The paper uses a novel method of scattering of the HF radiation by the heating facility for diagnostics of non-linear effects at the super-long radio paths. Experiments were conducted at three different powerful HF facilities: EISCAT (Norway), HAARP (Alaska), and Arecibo (Puerto Rico) and by using different far spaced receiving sites. The key problems for super-long-range propagation regime is the feeding of ionospheric waveguide. Then the energy needs to exit from the waveguide at a specific location to be detected by the surface-based receiver. During our studies the waveguide feeding was provided by the scattering of HF waves by the artificial ionospheric turbulence (AIT) above the HF heater. An interesting opportunity for the channeling of the HF signals occurs due to the aspect scattering of radio waves by field aligned irregularities (FAI), when the scattering vector is parallel to the Earth surface. Such FAIs geometry takes place over the Arecibo facility. Here FAI are oriented along the geomagnetic field line inclined by 43 degrees. Since the Arecibo HF beam is vertical, the aspect scattered waves will be oriented almost horizontally toward the South. Such geometry provides unique opportunity to channel the radio wave energy into the ionospheric waveguide and excites the whispering gallery modes

    Performance Analysis of a Portable Low-Cost SDR-Based Ionosonde

    No full text
    This work presents a software-defined radio ionosonde (ISDR) developed at the Abdus Salam International Centre for Theoretical Physics (Italy) and the Institute of Radio Astronomy (Ukraine) and installed at the Ukrainian Antarctic Station in 2017. For the first time, the results of the long-term data comparison of the ISDR with the conventional ionosonde IPS-42 produced by KEL Aerospace are presented and discussed. The matching of the ionograms obtained during the whole year of 2021, as well as a comparison of the critical frequencies and virtual heights of F, E, and Es layers manually scaled from the ionograms showed that the ISDR has a similar level of performance to IPS-42. At the same time, the ISDR is a more versatile instrument that supports a bistatic operation, provides Doppler measurements and polarization information, and has a significantly lower cost and transmission power. Different configurations of the ISDR are considered. The basic configuration allows for using the ISDR as a conventional vertical ionospheric sounder. An enhanced configuration of the ISDR allows for oblique sounding, as well as polarization information that enables the O- and X-propagation modes of the ionospheric signal to be distinguished. The enhanced passive version of the ISDR was successfully tested onboard the research vessel “Noosfera” on distances up to 1,400 km from the transmitting ISDR

    Space Weather Services for Civil Aviation-Challenges and Solutions

    No full text
    This paper presents a review on the PECASUS service, which provides advisories on enhanced space weather activity for civil aviation. The advisories are tailored according to the Standards and Recommended Practices of the International Civil Aviation Organization (ICAO). Advisories are disseminated in three impact areas: radiation levels at flight altitudes, GNSS-based navigation and positioning, and HF communication. The review, which is based on the experiences of the authors from two years of running pilot ICAO services, describes empirical models behind PECASUS products and lists ground- and space-based sensors, providing inputs for the models and 24/7 manual monitoring activities. As a concrete example of PECASUS performance, its products for a post-storm ionospheric F2-layer depression event are analyzed in more detail. As PECASUS models are particularly tailored to describe F2-layer thinning, they reproduce observations more accurately than the International Reference Ionosphere model (IRI(STORM)), but, on the other hand, it is recognized that the service performance is much affected by the coverage of its input data. Therefore, more efforts will be directed toward systematic measuring of the availability, timeliness and quality of the data provision in the next steps of the service development
    corecore