20 research outputs found
Evaluation of Airborne HySpex and Spaceborne PRISMA Hyperspectral Remote Sensing Data for Soil Organic Matter and Carbonates Estimation
Remote sensing and soil spectroscopy applications are valuable techniques for soil property estimation. Soil organic matter (SOM) and calcium carbonate are important factors in soil quality, and although organic matter is well studied, calcium carbonates require more investigation. In this study, we validated the performance of laboratory soil spectroscopy for estimating the aforementioned properties with referenced in situ data. We also examined the performance of imaging spectroscopy sensors, such as the airborne HySpex and the spaceborne PRISMA. For this purpose, we applied four commonly used machine learning algorithms and six preprocessing methods for the evaluation of the best fitting algorithm.. The study took place over crop areas of Amyntaio in Northern Greece, where extensive soil sampling was conducted. This is an area with a very variable mineralogical environment (from lignite mine to mountainous area). The SOM results were very good at the laboratory scale and for both remote sensing sensors with R2 = 0.79 for HySpex and R2 = 0.76 for PRISMA. Regarding the calcium carbonate estimations, the remote sensing accuracy was R2 = 0.82 for HySpex and R2 = 0.36 for PRISMA. PRISMA was still in the commissioning phase at the time of the study, and therefore, the acquired image did not cover the whole study area. Accuracies for calcium carbonates may be lower due to the smaller sample size used for the modeling procedure. The results show the potential for using quantitative predictions of SOM and the carbonate content based on soil and imaging spectroscopy at the air and spaceborne scales and for future applications using larger datasets
Improved Estimations of Nitrate and Sediment Concentrations Based on SWAT Simulations and Annual Updated Land Cover Products from a Deep Learning Classification Algorithm
The agricultural sector and natural resources are heavily interdependent, comprising a coherent but complex system. The soil and water assessment tool (SWAT) is widely used in assessing these interdependencies for regional watershed management. However, long-term simulations of agricultural watersheds are considered as not realistic since they have often been performed assuming constant land use over time and are based on the coarse resolution of the existing global or national data. This work presents the first insights of the synergy among SWAT model and deep learning classification algorithms to provide annually updated and realistic model’s parameterization and simulations. The proposed hybrid modelling approach couples the physical process SWAT model with the versatility of Earth observation data-driven non-linear deep learning algorithms for land use classification (Overall Accuracy (OA) = 79.58% and Kappa = 0.79), giving a strong advantage to decision makers for efficient management planning. A validation case at an agricultural watershed located in Northern Greece is provided to demonstrate their synergistic use to estimate nitrate and sediment concentrations that load in Zazari Lake. The SWAT model has been implemented under two different simulations; one with the use of a static coarse land use map and the other with the use of the annual updated land use maps for three consecutive years (2017–2019). The results indicate that the land use changes affect the final estimations resulting to an enhanced prediction performance of 1% and 2% for sediment and nitrate, respectively, when the annual land use maps are incorporated into SWAT simulations. In this context, a hybrid approach could further contribute to addressing challenges and support a data-centric scheme for informed decision making with regard to environmental and agricultural issues on the river basin scale
Integrating Vertical and Horizontal Approaches for Management of Shallow Lakes and Wetlands
Most lake restoration/rehabilitation schemes are biased toward vertical lake management practices generally applicable to deep lakes. Unfortunately, most schemes fail to or inadequately consider their actions within the context of horizontal lake management, an especially critical component when considering shallow lakes. Two Greek lakes, phytoplankton-dominated Koronia and macrophyte-dominated Chimaditida, are used to illustrate the importance of integrating vertical and horizontal considerations in the management of shallow lakes experiencing pronounced water level reduction. Attempting to manage the structure and function of fringing wetlands via vertical manipulations of the water column are doomed to failure without consideration of changes in physical and chemical aspects of the memory (sediments, soils). Fringing wetlands must not be considered as monotypic habitats interacting with lakes in direct proportion to their aerial extent. A predominately vertical lake management approach is probably valid for systems such as Lake Koronia without a history of significant submersed or emergent macrophytes. For those lakes embedded within significant wetlands like Lake Chimaditida, however, failure to consider horizontal lake management as a significant component of the overall system rehabilitation will likely diminish its successful outcome. Finally, definitions of wetlands currently used by Ramsar and aquatic scientists based primarily on structural aspects of ecosystems need to be modified to recognize the overriding importance of aerially differentiated functional aspects within vegetated communities as well as fundamental differences between vegetated and open-water habitats
Soil Loss Estimation by Water Erosion in Agricultural Areas Introducing Artificial Intelligence Geospatial Layers into the RUSLE Model
The existing digital soil maps are mainly characterized by coarse spatial resolution and are not up to date; thus, they are unable to support the physical process-based models for improved predictions. The overarching objective of this work is oriented toward a data-driven approach and datacube-based tools (Soil Data Cube), leveraging Sentinel-2 imagery data, open access databases, ground truth soil data and Artificial Intelligence (AI) architectures to provide enhanced geospatial layers into the Revised Universal Soil Loss Equation (RUSLE) model, improving both the reliability and the spatial resolution of the final map. The proposed methodology was implemented in the agricultural area of the Imathia Regional Unit (northern Greece), which consists of both mountainous areas and lowlands. Enhanced soil maps of Soil Organic Carbon (SOC) and soil texture were generated at 10 m resolution through a time-series analysis of satellite data and an XGBoost (eXtrene Gradinent Boosting) model. The model was trained by 84 ground truth soil samples (collected from agricultural fields) taking into account also additional environmental covariates (including the digital elevation model and climatic data) and following a Digital Soil Mapping (DSM) approach. The enhanced layers were introduced into the RUSLE’s soil erodibility factor (K-factor), producing a soil erosion layer with high spatial resolution. Notable prediction accuracy was achieved by the AI model with R2 0.61 for SOC and 0.73, 0.67 and 0.63 for clay, sand, and silt, respectively. The average annual soil loss of the unit was found to be 1.76 ton/ha/yr with 6% of the total agricultural area suffering from severe erosion (>11 ton/ha/yr), which was mainly found in the mountainous border regions, showing the strong influence of the mountains in the agricultural fields. The overall methodology could strongly support regional decision making and planning and environmental policies such as the European Common Agricultural Policy (CAP) and the Sustainable Development Goals (SDGs)
Estimation of Sugar Content in Wine Grapes via In Situ VNIR–SWIR Point Spectroscopy Using Explainable Artificial Intelligence Techniques
Spectroscopy is a widely used technique that can contribute to food quality assessment in a simple and inexpensive way. Especially in grape production, the visible and near infrared (VNIR) and the short-wave infrared (SWIR) regions are of great interest, and they may be utilized for both fruit monitoring and quality control at all stages of maturity. The aim of this work was the quantitative estimation of the wine grape ripeness, for four different grape varieties, by using a highly accurate contact probe spectrometer that covers the entire VNIR–SWIR spectrum (350–2500 nm). The four varieties under examination were Chardonnay, Malagouzia, Sauvignon-Blanc, and Syrah and all the samples were collected over the 2020 and 2021 harvest and pre-harvest phenological stages (corresponding to stages 81 through 89 of the BBCH scale) from the vineyard of Ktima Gerovassiliou located in Northern Greece. All measurements were performed in situ and a refractometer was used to measure the total soluble solids content (°Brix) of the grapes, providing the ground truth data. After the development of the grape spectra library, four different machine learning algorithms, namely Partial Least Squares regression (PLS), Random Forest regression, Support Vector Regression (SVR), and Convolutional Neural Networks (CNN), coupled with several pre-treatment methods were applied for the prediction of the °Brix content from the VNIR–SWIR hyperspectral data. The performance of the different models was evaluated using a cross-validation strategy with three metrics, namely the coefficient of the determination (R2), the root mean square error (RMSE), and the ratio of performance to interquartile distance (RPIQ). High accuracy was achieved for Malagouzia, Sauvignon-Blanc, and Syrah from the best models developed using the CNN learning algorithm (R2>0.8, RPIQ≥4), while a good fit was attained for the Chardonnay variety from SVR (R2=0.63, RMSE=2.10, RPIQ=2.24), proving that by using a portable spectrometer the in situ estimation of the wine grape maturity could be provided. The proposed methodology could be a valuable tool for wine producers making real-time decisions on harvest time and with a non-destructive way
Soil organic carbon prediction and mapping using Sentinel-2 multi-temporal imagery data over Greek croplands
International audienc
Integrated Methodology for Estimating Water Use in Mediterranean Agricultural Areas
Agricultural use is by far the largest consumer of fresh water worldwide, especially in the Mediterranean, where it has reached unsustainable levels, thus posing a serious threat to water resources. Having a good estimate of the water used in an agricultural area would help water managers create incentives for water savings at the farmer and basin level, and meet the demands of the European Water Framework Directive. This work presents an integrated methodology for estimating water use in Mediterranean agricultural areas. It is based on well established methods of estimating the actual evapotranspiration through surface energy fluxes, customized for better performance under the Mediterranean conditions: small parcel sizes, detailed crop pattern, and lack of necessary data. The methodology has been tested and validated on the agricultural plain of the river Strimonas (Greece) using a time series of Terra MODIS and Landsat 5 TM satellite images, and used to produce a seasonal water use map at a high spatial resolution. Finally, a tool has been designed to implement the methodology with a user-friendly interface, in order to facilitate its operational use
Evaluation of a Micro-Electro Mechanical Systems Spectral Sensor for Soil Properties Estimation
Soil properties estimation with the use of reflectance spectroscopy has met major advances over the last decades. Their non-destructive nature and their high accuracy capacity enabled a breakthrough in the efficiency of performing soil analysis against conventional laboratory techniques. As the need for rapid, low cost, and accurate soil properties’ estimations increases, micro electro mechanical systems (MEMS) have been introduced and are becoming applicable for informed decision making in various domains. This work presents the assessment of a MEMS sensor (1750–2150 nm) in estimating clay and soil organic carbon (SOC) contents. The sensor was first tested under various experimental setups (different working distances and light intensities) through its similarity assessment (Spectral Angle Mapper) to the measurements of a spectroradiometer of the full 350–2500 nm range that was used as reference. MEMS performance was evaluated over spectra measured from 102 samples in laboratory conditions. Models’ calibrations were performed using random forest (RF) and partial least squares regression (PLSR). The results provide insights that MEMS could be employed for soil properties estimation, since the RF model demonstrated solid performance over both clay (R2 = 0.85) and SOC (R2 = 0.80). These findings pave the way for supporting daily agriculture applications and land related policies through the exploration of a wider set of soil properties
Estimation of Sugar Content in Wine Grapes via In Situ VNIR–SWIR Point Spectroscopy Using Explainable Artificial Intelligence Techniques
Spectroscopy is a widely used technique that can contribute to food quality assessment in a simple and inexpensive way. Especially in grape production, the visible and near infrared (VNIR) and the short-wave infrared (SWIR) regions are of great interest, and they may be utilized for both fruit monitoring and quality control at all stages of maturity. The aim of this work was the quantitative estimation of the wine grape ripeness, for four different grape varieties, by using a highly accurate contact probe spectrometer that covers the entire VNIR–SWIR spectrum (350–2500 nm). The four varieties under examination were Chardonnay, Malagouzia, Sauvignon-Blanc, and Syrah and all the samples were collected over the 2020 and 2021 harvest and pre-harvest phenological stages (corresponding to stages 81 through 89 of the BBCH scale) from the vineyard of Ktima Gerovassiliou located in Northern Greece. All measurements were performed in situ and a refractometer was used to measure the total soluble solids content (°Brix) of the grapes, providing the ground truth data. After the development of the grape spectra library, four different machine learning algorithms, namely Partial Least Squares regression (PLS), Random Forest regression, Support Vector Regression (SVR), and Convolutional Neural Networks (CNN), coupled with several pre-treatment methods were applied for the prediction of the °Brix content from the VNIR–SWIR hyperspectral data. The performance of the different models was evaluated using a cross-validation strategy with three metrics, namely the coefficient of the determination (R2), the root mean square error (RMSE), and the ratio of performance to interquartile distance (RPIQ). High accuracy was achieved for Malagouzia, Sauvignon-Blanc, and Syrah from the best models developed using the CNN learning algorithm (R2>0.8, RPIQ≥4), while a good fit was attained for the Chardonnay variety from SVR (R2=0.63, RMSE=2.10, RPIQ=2.24), proving that by using a portable spectrometer the in situ estimation of the wine grape maturity could be provided. The proposed methodology could be a valuable tool for wine producers making real-time decisions on harvest time and with a non-destructive way
www.mdpi.com/journal/remotesensing Article Integrated Methodology for Estimating Water Use in Mediterranean Agricultural Areas
Abstract: Agricultural use is by far the largest consumer of fresh water worldwide, especially in the Mediterranean, where it has reached unsustainable levels, thus posing a serious threat to water resources. Having a good estimate of the water used in an agricultural area would help water managers create incentives for water savings at the farmer and basin level, and meet the demands of the European Water Framework Directive. This work presents an integrated methodology for estimating water use in Mediterranean agricultural areas. It is based on well established methods of estimating the actual evapotranspiration through surface energy fluxes, customized for better performance under the Mediterranean conditions: small parcel sizes, detailed crop pattern, and lack of necessary data. The methodology has been tested and validated on the agricultural plain of the river Strimonas (Greece) using a time series of Terra MODIS and Landsat 5 TM satellite images, and used to produce a seasonal water use map at a high spatial resolution. Finally, a tool has been designed to implement the methodology with a user-friendl