4,238 research outputs found

    Differential rotation of Kepler-71 via transit photometry mapping of faculae and starspots

    Get PDF
    Knowledge of dynamo evolution in solar-type stars is limited by the difficulty of using active region monitoring to measure stellar differential rotation, a key probe of stellar dynamo physics. This paper addresses the problem by presenting the first ever measurement of stellar differential rotation for a main-sequence solar-type star using starspots and faculae to provide complementary information. Our analysis uses modelling of light curves of multiple exoplanet transits for the young solar-type star Kepler-71, utilizing archival data from the Kepler mission. We estimate the physical characteristics of starspots and faculae on Kepler-71 from the characteristic amplitude variations they produce in the transit light curves and measure differential rotation from derived longitudes. Despite the higher contrast of faculae than those in the Sun, the bright features on Kepler-71 have similar properties such as increasing contrast towards the limb and larger sizes than sunspots. Adopting a solar-type differential rotation profile (faster rotation at the equator than the poles), the results from both starspot and facula analysis indicate a rotational shear less than about 0.005 rad d-1, or a relative differential rotation less than 2 per cent, and hence almost rigid rotation. This rotational shear contrasts with the strong rotational shear of zero-age main-sequence stars and the modest but significant shear of the modern-day Sun. Various explanations for the likely rigid rotation are considered

    Collective patterns arising out of spatio-temporal chaos

    Full text link
    We present a simple mathematical model in which a time averaged pattern emerges out of spatio-temporal chaos as a result of the collective action of chaotic fluctuations. Our evolution equation possesses spatial translational symmetry under a periodic boundary condition. Thus the spatial inhomogeneity of the statistical state arises through a spontaneous symmetry breaking. The transition from a state of homogeneous spatio-temporal chaos to one exhibiting spatial order is explained by introducing a collective viscosity which relates the averaged pattern with a correlation of the fluctuations.Comment: 11 pages (Revtex) + 5 figures (postscript

    Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices

    Get PDF
    A novel approach to tomographic data processing has been developed and evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose a system in which there is no need for powerful, local to the scanner processing facility, capable to reconstruct images on the fly. Instead we introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform connected directly to data streams coming from the scanner, which can perform event building, filtering, coincidence search and Region-Of-Response (ROR) reconstruction by the programmable logic and visualization by the integrated processors. The platform significantly reduces data volume converting raw data to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201

    Phase Diffusion in Localized Spatio-Temporal Amplitude Chaos

    Full text link
    We present numerical simulations of coupled Ginzburg-Landau equations describing parametrically excited waves which reveal persistent dynamics due to the occurrence of phase slips in sequential pairs, with the second phase slip quickly following and negating the first. Of particular interest are solutions where these double phase slips occur irregularly in space and time within a spatially localized region. An effective phase diffusion equation utilizing the long term phase conservation of the solution explains the localization of this new form of amplitude chaos.Comment: 4 pages incl. 5 figures uucompresse

    Long-term photometric behaviour of XZ Dra Binarity or magnetic cycle of a Blazhko type RRab star

    Full text link
    The extended photometry available for XZ Dra, a Blazhko type RR Lyrae star, makes it possible to study its long-term behavior. It is shown that its pulsation period exhibit cyclic, but not strictly regular variations with approx. 7200 d period. The Blazhko period (approx. 76 d) seems to follow the observed period changes of the fundamental mode pulsation with dP_B/dP_0=7.7 x 10^4 gradient. Binary model cannot explain this order of period change of the Blazhko modulation, nevertheless it can be brought into agreement with the O-C data of the pulsation. The possibility of occurrence of magnetic cycle is raised.Comment: 13 pages, 11 figures (submitted to A&A

    Two-dimensional Navier--Stokes simulation of deformation and break up of liquid patches

    Full text link
    The large deformations and break up of circular 2D liquid patches in a high Reynolds number (Re=1000) gas flow are investigated numerically. The 2D, plane flow Navier--Stokes equations are directly solved with explicit tracking of the interface between the two phases and a new algorithm for surface tension. The numerical method is able to pursue the simulation beyond the breaking or coalescence of droplets. The simulations are able to unveil the intriguing details of the non-linear interplay between the deforming droplets and the vortical structures in the droplet's wake.Comment: 13 pages including 4 postscript figures; Revised version as resubmitted to PRL. Title has change

    Neel Order and Electron Spectral Functions in the Two-Dimensional Hubbard Model: a Spin-Charge Rotating Frame Approach

    Full text link
    Using recently developed quantum SU(2)xU(1) rotor approach, that provides a self-consistent treatment of the antiferromagnetic state we have performed electronic spectral function calculations for the Hubbard model on the square lattice. The collective variables for charge and spin are isolated in the form of the space-time fluctuating U(1) phase field and rotating spin quantization axis governed by the SU(2) symmetry, respectively. As a result interacting electrons appear as composite objects consisting of bare fermions with attached U(1) and SU(2) gauge fields. This allows us to write the fermion Green's function in the space-time domain as the product CP^1 propagator resulting from the SU(2) gauge fields, U(1) phase propagator and the pseudo-fermion correlation function. As a result the problem of calculating the spectral line shapes now becomes one of performing the convolution of spin, charge and pseudo-fermion Green's functions. The collective spin and charge fluctuations are governed by the effective actions that are derived from the Hubbard model for any value of the Coulomb interaction. The emergence of a sharp peak in the electron spectral function in the antiferromagnetic state indicates the decay of the electron into separate spin and charge carrying particle excitations.Comment: 16 pages, 5 figures, submitted to Phys. Rev.

    Activity and differential rotation of the early M dwarf Kepler-45 from transit mapping

    Get PDF
    Little is known of the activity and differential rotation of low luminosity, early M dwarfs from direct observation. We present the first stellar activity analysis of star-spots and faculae for the hot Jupiter hosting M1V dwarf Kepler-45 from Kepler transit light curves. We find star-spot and facula temperatures contrasting a few hundred degrees with the quiet photosphere, hence similar to other early M dwarfs having a convective envelope surrounding a radiative core. Star-spots are prominent close to the centre of the stellar disc, with faculae prominent towards the limbs, similar to what is observed for the Sun. Star-spot and facula mean sizes are about 40 and 45 × 10^3 km, respectively, and thus faculae occupy a 10 per cent larger surface area than the star-spots. A short-term activity cycle of about 295 d is observed that is reminiscent of those seen for other cool dwarfs. Adopting a solar-type differential rotation profile (faster equatorial rotation than polar rotation), our star-spot and facula temporal mapping indicates a rotation period of 15.520 ± 0.025 d at the transit latitude of −33.2◦. From the mean stellar rotation of 15.762 d, we estimate a rotational shear of 0.031 ± 0.004 rad d^−1, or a relative differential rotation of 7.8 ± 0.9 per cent. Kepler-45’s surface rotational shear is thus consistent with observations and theoretical modelling of other early M dwarfs that indicate a shear of less than 0.045 rad d^−1 and no less than 0.03 rad d^−1 for stars with similar stellar rotation periods

    Dynamic Scaling of Ion-Sputtered Surfaces

    Get PDF
    We derive a stochastic nonlinear equation to describe the evolution and scaling properties of surfaces eroded by ion bombardment. The coefficients appearing in the equation can be calculated explicitly in terms of the physical parameters characterizing the sputtering process. We find that transitions may take place between various scaling behaviors when experimental parameters such as the angle of incidence of the incoming ions or their average penetration depth, are varied.Comment: 13 pages, Revtex, 2 figure
    corecore