5 research outputs found

    Med-Flamingo: a Multimodal Medical Few-shot Learner

    Full text link
    Medicine, by its nature, is a multifaceted domain that requires the synthesis of information across various modalities. Medical generative vision-language models (VLMs) make a first step in this direction and promise many exciting clinical applications. However, existing models typically have to be fine-tuned on sizeable down-stream datasets, which poses a significant limitation as in many medical applications data is scarce, necessitating models that are capable of learning from few examples in real-time. Here we propose Med-Flamingo, a multimodal few-shot learner adapted to the medical domain. Based on OpenFlamingo-9B, we continue pre-training on paired and interleaved medical image-text data from publications and textbooks. Med-Flamingo unlocks few-shot generative medical visual question answering (VQA) abilities, which we evaluate on several datasets including a novel challenging open-ended VQA dataset of visual USMLE-style problems. Furthermore, we conduct the first human evaluation for generative medical VQA where physicians review the problems and blinded generations in an interactive app. Med-Flamingo improves performance in generative medical VQA by up to 20\% in clinician's rating and firstly enables multimodal medical few-shot adaptations, such as rationale generation. We release our model, code, and evaluation app under https://github.com/snap-stanford/med-flamingo.Comment: Preprin

    Almanac: Retrieval-Augmented Language Models for Clinical Medicine

    Full text link
    Large-language models have recently demonstrated impressive zero-shot capabilities in a variety of natural language tasks such as summarization, dialogue generation, and question-answering. Despite many promising applications in clinical medicine, adoption of these models in real-world settings has been largely limited by their tendency to generate incorrect and sometimes even toxic statements. In this study, we develop Almanac, a large language model framework augmented with retrieval capabilities for medical guideline and treatment recommendations. Performance on a novel dataset of clinical scenarios (n = 130) evaluated by a panel of 5 board-certified and resident physicians demonstrates significant increases in factuality (mean of 18% at p-value < 0.05) across all specialties, with improvements in completeness and safety. Our results demonstrate the potential for large language models to be effective tools in the clinical decision-making process, while also emphasizing the importance of careful testing and deployment to mitigate their shortcomings

    A Generalizable Deep Learning System for Cardiac MRI

    Full text link
    Cardiac MRI allows for a comprehensive assessment of myocardial structure, function, and tissue characteristics. Here we describe a foundational vision system for cardiac MRI, capable of representing the breadth of human cardiovascular disease and health. Our deep learning model is trained via self-supervised contrastive learning, by which visual concepts in cine-sequence cardiac MRI scans are learned from the raw text of the accompanying radiology reports. We train and evaluate our model on data from four large academic clinical institutions in the United States. We additionally showcase the performance of our models on the UK BioBank, and two additional publicly available external datasets. We explore emergent zero-shot capabilities of our system, and demonstrate remarkable performance across a range of tasks; including the problem of left ventricular ejection fraction regression, and the diagnosis of 35 different conditions such as cardiac amyloidosis and hypertrophic cardiomyopathy. We show that our deep learning system is capable of not only understanding the staggering complexity of human cardiovascular disease, but can be directed towards clinical problems of interest yielding impressive, clinical grade diagnostic accuracy with a fraction of the training data typically required for such tasks.Comment: 21 page main manuscript, 4 figures. Supplementary Appendix and code will be made available on publicatio

    Predicting Environmental Chemical Toxicity using a New Hybrid Deep Machine Learning Method

    No full text
    Humans are exposed to thousands of potentially toxic chemicals including environmental chemicals such as industrial wastes, food products, solvents, air pollutants, fertilizers, pesticides, insecticides, carcinogens, drugs, metals/metalloids, and other industrial chemicals. Approximately 300,000 such chemicals currently in use, unfortunately little is known about their potential toxicity. Determining human toxicity potential of chemicals remains a challenge due to a substantial resource required to assess a chemical in-vivo, and only a few thousand single chemicals in commercial use has been evaluated. In this study, to predict the environmental chemical toxicity, we developed a new hybrid neural network (HNN) deep learning model consisting of a Convolutional Neural Network (CNN) and multilayer perceptron (MLP) type feed forward neural network (FFNN). Our HNN deep learning model trained based on thousands of chemicals, presented the best performance for majority of the cases. Taken together, our hybrid HNN deep learning models has a wide applicability in the prediction of toxicity of any chemical category and its mixtures

    Predicting Dose-Range Chemical Toxicity using Novel Hybrid Deep Machine-Learning Method

    No full text
    Humans are exposed to thousands of chemicals, including environmental chemicals. Unfortunately, little is known about their potential toxicity, as determining the toxicity remains challenging due to the substantial resources required to assess a chemical in vivo. Here, we present a novel hybrid neural network (HNN) deep learning method, called HNN-Tox, to predict chemical toxicity at different doses. To develop a hybrid HNN-Tox method, we combined two neural network frameworks, the Convolutional Neural Network (CNN) and the multilayer perceptron (MLP)-type feed-forward neural network (FFNN). Combining the CNN and FCNN in the field of environmental chemical toxicity prediction is a novel approach. We developed several binary and multiclass classification models to assess dose-range chemical toxicity that is trained based on thousands of chemicals with known toxicity. The performance of the HNN-Tox was compared with other machine-learning methods, including Random Forest (RF), Bootstrap Aggregation (Bagging), and Adaptive Boosting (AdaBoost). We also analyzed the model performance dependency on varying features, descriptors, dataset size, route of exposure, and toxic dose. The HNN-Tox model, trained on 59,373 chemicals annotated with known LD50 and routes of exposure, maintained its predictive ability with an accuracy of 84.9% and 84.1%, even after reducing the descriptor size from 318 to 51, and the area under the ROC curve (AUC) was 0.89 and 0.88, respectively. Further, we validated the HNN-Tox with several external toxic chemical datasets on a large scale. The HNN-Tox performed optimally or better than the other machine-learning methods for diverse chemicals. This study is the first to report a large-scale prediction of dose-range chemical toxicity with varying features. The HNN-Tox has broad applicability in predicting toxicity for diverse chemicals and could serve as an alternative methodology approach to animal-based toxicity assessment
    corecore